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Executive Summary 

Traffic simulation is an important tool that can assist researchers, analysts, and policymakers in testing 

vehicle/traffic control algorithms, gaining insights into micro/macro traffic dynamics, and designing 

traffic management strategies. However, different implementations require different simulation scales, 

and no multiscale simulation platform satisfies all requirements. In this project, we proposed to 

establish a multiscale vehicle-traffic-demand (VTD) simulation platform for connected and automated 

transportation systems (CATS). This is particularly meant for the control and management of CATS with 

varying penetration rates of connected and automated vehicles (CAVs). We built a microscopic vehicle-

in-the-loop (VIL) simulation platform, which used Unity 3D to simulate/visualize vehicle 

operations/dynamics and Simulation of Urban Mobility (SUMO) to simulate traffic flow dynamics [1].  

The development of the multiscale VTD leveraged the existing platform and extended the platform to 

also simulate large-scale traffic flows. The VTD platform in this project added Multiagent Transport 

Simulation (MATSim) to the VIL platform. This addition led to tasks on integrating traffic simulation 

models at different simulating scales (i.e., MATSim, SUMO, and Unity); communicating among MATSim, 

SUMO, Unity, and the Amazon Web Services (AWS) DeepRacer; smoothing all processes in the platform; 

and efficiently building a larger traffic environment in Unity. In this VTD platform, MATSim was expected 

to model traffic flows moving across traffic links and therefore was assigned a larger traffic region than 

SUMO, followed by Unity. In this regard, MATSim was given a network with a larger range than that 

given to SUMO. More specifically, we chose Greater Seattle to be MATSim’s study area, while 

Downtown Seattle was the study area in SUMO. These two network systems were obtained from 

different sources; we therefore calibrated them individually.  

This report describes our proposed approach to these tasks. Sections in this report address (i) network 

set-up and network calibrations for the two obtained networks; (ii) design of the multiscale simulation 

platform VTD; (iii) development and implementation of the multiscale simulation platform VTD; and (iv) 

discussion, conclusions, and possible directions for future work. In the first task, we collected the 

network data sets, traffic speed data, and traffic volume data from the City of Seattle, the City of 

Bellevue, INRIX, and the Puget Sound Regional Council (PSRC). The collected networks were then 

calibrated based on observed speeds and volumes. The second task focused on the integration of 

MATSim and SUMO, as well as communication among SUMO, Unity, and DeepRacer. This task was 

further broken down into integration between SUMO and MATSim, and communication among SUMO, 

Unity, and DeepRacer. The third task was to complete integration and communication based on the 

design and to ensure that the MATSim-SUMO integration was compatible. We then implemented the 

platform for the Greater Seattle area.  
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After platform development and implementation, we also proposed several research tasks to utilize the 

platform to better understand traffic dynamics and improve traffic performance. These included traffic 

dynamics learning and traffic signal and vehicle control. 
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Section 1 Research Background 

Traffic simulation is becoming an increasingly important tool for assisting researchers, analysts, and 

policymakers in testing vehicle/traffic control algorithms, gaining insights into micro/macro traffic 

dynamics, and designing traffic management strategies. Specific traffic/transportation applications may 

require a proper simulation at the scale of a corridor, a small network, a city/region network, etc. 

Although any of the specific scales may lack perspective on the behaviors of the overall transportation 

system, there are currently few multiscale simulation platforms that can satisfy the requirements of all 

the scales. In this project, we proposed a framework for establishing a multiscale vehicle-traffic-demand 

(VTD) simulation platform. This platform is general and can be particularly tailored for the control and 

management of connected and automated transportation systems (CATS) with varying penetration rates 

of connected and automated vehicles (CAVs). 

There are currently multiple traffic simulation software tools for transportation-related studies. Here we 

briefly discuss some of the latest and most widely used simulation platforms, including a popular 

macroscopic simulation model called Multi-Agent Transport Simulation (MATSim) [2], an emerging 

mesoscopic simulation model called DTALite [3], the popular microscopic simulation model called Vissim 

[4], a novel microscopic simulation model called A/B Street [5], and another popular open-source 

simulation model called Simulation of Urban MObility (SUMO) [6]. MATSim is an agent-based platform 

for large-scale traffic simulation. It is able to simulate daily traffic for a large region, but it cannot 

capture detailed, individual vehicle behaviors such as turning movements and accelerations. DTALite is 

an open-source, mesoscopic, dynamic traffic assignment (DTA) simulation package that provides a 

theoretically rigorous and computationally efficient traffic network modeling tool. However, users need 

a background in DTA and traffic flow theory to use the model, and the network visualization of DTALite 

is simple in comparison to that of Vissim, A/B Street, or SUMO. Vissim is a widely used, multimodal 

simulator that allows users to define different vehicle types, although it is not open source. A/B Street is 

an open-source, microscopic traffic simulation platform released last year. The platform has an 

impressive user interface for traffic networks. Nevertheless, the underlying traffic models in A/B Street 

may be limited. SUMO is an open-source software platform and has been widely used for transportation 

studies recently. However, users need to define many of the detailed traffic behaviors and dynamics, 

which requires deeper knowledge about traffic/transportation. 

None of the above-discussed simulation platforms is multiscale. To explore ways to simulate traffic 

networks on different scales, some researchers [6, 7] have attempted to build a hybrid model that 

integrates different levels of detail. However, developing a new multiscale simulation platform from 

scratch is time- and resource-intensive, and it is often hard to capture both the macroscopic and 

microscopic features of traffic flow or demand patterns. Although other researchers have coupled 

different traffic simulation tools representing different levels of detail for multiscale simulation, such as 
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mesoscopic vs. microscopic [8], making multiple platforms compatible and implementing a 

communication system among multiple models have remained a challenging task. Additionally, a limited 

number of studies have explored traffic networks from a single vehicular level to a network level.  

The research team built a microscopic vehicle-in-the-loop (VIL) simulation platform in 2020 [1], which 

uses Unity 3D to simulate/visualize vehicle operations/dynamics and SUMO to simulate traffic flow 

dynamics. Figure  1 shows an overview of the VIL simulation model. The VIL model applies the TCP/IP 

communication protocol to communicate and coordinate between vehicle simulation (Unity) and traffic 

simulation (SUMO), which can also help transfer data and information between the two. The model has 

been shown to be a useful virtual testbed for research, testing, and validation of vehicle control (e.g., 

eco-driving), traffic control, and coupled traffic-vehicle control [1]. The VTD simulation platform 

implemented in this project expands the VIL platform, and is expected to enable the team and other 

researchers to investigate and test/validate more integrated vehicle-traffic control models on larger 

areas. The VTD will also be able to facilitate concerted management strategies that can be 

simultaneously developed for and applied to a multiscale transportation system. 

 

 

Figure 1: Overview of the Vehicle in the Loop (VIL) Simulation 
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 Section 2 The Framework for the VTD Platform 

The vehicle-traffic-demand (VTD) platform integrates MATSim, SUMO, and Unity. The overall framework 

is shown in Figure 2. The integration is divided into MATSim-SUMO and SUMO-Unity because of the 

distinct simulation frameworks inherent in the three models. MATSim models the 24-hour trip activities 

of all agents and demand at once. In contrast, SUMO models individual moving behaviors at each time 

step; Unity projects the moving behaviors at each time step on the corresponding objects in its 

environment. An individual agent’s behavior can therefore be obtained at each time step in SUMO and 

Unity. The trip activities and demand in MATSim, on the other hand, can be yielded only after MATSim 

completes all the activity modeling. Therefore, integrations of MATSim-SUMO and SUMO-Unity have 

different designs, which are described as follows. 

 

Figure 2: Overview of the VTD Simulation 

 

Subsection 2.1: MATSim-SUMO Integration 

The concept of MATSim-SUMO integration is to provide coarse information (e.g., demand) about the 

larger region while presenting traffic details (e.g., individual movements) from the local areas that are 

considered important. MATSim is designed to handle the former and SUMO the latter. At the  MATSim-

SUMO boundaries, the trip of each agent and the traffic network representation should be consistent. In 

this regard, we designed a trip integration process for trip consistency and a potential strategy for 

network connection at boundaries.  
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Subsection 2.1.1: Design of Trip Integration  

Trip integration follows the concept discussed above in that we first gain a coarse view of traffic 

dynamics (e.g., traffic flow, link departure/arrival) and  then observe the traffic details in several key 

local areas. In the design, MATSim provides the large-scale traffic dynamics because it is capable of 

collecting the link departure and arrival locations and times of each agent. The departure/arrival 

information allows us to extract when and where each agent entered and exited the local areas. 

According to the extracted information, each trip is divided into multiple trip segments categorized by 

traveling within the larger region or in the local areas. The trip segments assigned to the local areas then 

act as the travel input for the microscopic simulation by SUMO. To guarantee consistency of the trip 

scenarios in both simulation models, the departure times of the ongoing trips within the larger region 

for those agents just exiting local areas are updated and then become the input to MATSim for the final 

demand simulation. 

The number of divided trips depends on the number of times an agent travels into the local areas. All 

the cases of trip division can be found in Table 1, in which we define the larger and the local areas by the 

respective abbreviations for MATSim (“M”) and SUMO (“S”). Cases (i) and (ii) consider trips only in S and 

M, respectively. Other cases, in contrast, consider trips across both M and S. Suppose an agent travels 

into S n times, then the agent’s trip in M will be divided into n trip segments if the origin and the 

destination include both M and S, i.e., cases (iii) and (vi). If the origin and the destination are only in M, 

i.e. case (iv),  then the agent’s trip in M will be divided into n+1 trip segments. The divided trip segments 

in M, i.e. case (v) will be n-1 if the agent’s origin and the destination are both in S. 

Table 1: Cases for Trip Division 

Cases Traveling Cases The Number of Trips in M The Number of Trips in S 

1 S 0 1 

2 M 1 0 

3 M→S→M→…→S n n 

4 M→S→M→…→M n+1 n 

5 S→M→S→…→S n-1 n 

6 S→M→S→…→M n n 

 



 

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems  9 

In summary, the process discussed above requires two MATSim simulations and one SUMO simulation 

in between. Since the two simulations are different, outputs from the two MATSim simulations may also 

be different. Here we provide a simple example as follows. After running the first MATSim simulation, 

the result shows an agent travels from M (at 8:10 am) through S (8:20 to 8:30 am) and finishes the 

overall trip in M (at 8:40 am), i.e., case (iv) in Table 1 with n = 1. The overall trip will consequently be 

divided into two trips in MATSim and one trip in SUMO, as illustrated in Figure 3, in the following order: 

(i) trip #1 traveling in M (8:10 to 8:20 am), (ii) trip of traveling in S (8:20 to 8:30 am), and (iii) trip #2 

traveling in M (8:30 to 8:40 am). These trips are later converted into agent plans as input for MATSim 

and a route demand as input for SUMO. At the moment, MATSim estimates the arrival time given to the 

route demand in SUMO is 8:30 am and the travel time in SUMO area is 10 min. The agent’s movement 

will then be simulated in SUMO, and the travel time of the agent may be different from 10 min since 

SUMO considers more detailed traffic dynamics and congestion patterns. Assume SUMO simulation 

generates 12 min travel time for the agent, implying that the agent will finish the trip in SUMO and 

return to MATSim at 8:32 am. That is, in the second MATSim simulation, trip #2 in MATSim will start at 

8:32 am instead of 8:30 am as MATSim initially estimated. In this case, the first MATSim simulation is 

just used to generate initial agent schedules to divide their trips if necessary. Results of the second 

MATSim simulation are used for analysis. 

 

Figure 3: Design of Trip Integration 

 

Subsection 2.1.2: Design of the Integration of Network Representations 

The difficulty of making the networks used in MATSim and SUMO compatible varies depending on the 

complexity and sources of the networks. Indeed, the difficulty should be relatively low if one uses the 

same network in both simulation models. The number of links that SUMO covers, in this case, will be 

less than or equal to the number of links that MATSim covers. Because the network representations in 
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both simulation models are already compatible, integration of the network representations is no longer 

required no matter how complex the network is. However, the step is necessary if the networks used for 

the two simulation models are from different sources. One will have to compare the links of one 

network to the other. The comparison can be time-consuming if the networks are complex and, in 

particular, have many differences. In this case, matching the links at the boundaries of the two 

simulation models, whose networks have been calibrated, is a potential strategy for making the two 

networks compatible. The matching approach in our design is affected by the networks used in this 

project (see Section 3: MATSim Calibration), in which a road is usually represented by a link in SUMO but 

by a series of shorter links in MATSim. As illustrated in Figure 4, we split each of the boundary links in 

SUMO into multiple segments and compute the distance between each link segment and the center of 

the MATSim link. The least distance is then considered to be the distance between the SUMO link and 

the MATSim link. After distances between the MATSim link and all the SUMO links have been computed, 

e.g., the green and the yellow illustrated in this figure, we record the SUMO link that has the least 

distance as the one matched to the MATSim link. Those matched link pairs are later summarized in a 

matching list, which is used for simulating agents traveling from the SUMO to the MATSim areas and 

vice versa. Nevertheless, this approach may successfully match only a limited proportion of the links at 

the boundaries if the two networks are very different. In other words, manually matching the rest of the 

links and ensuring the validity of the matched link pairs may still be required. 

 

Figure 4: Link Matching Approach 

 

Subsection 2.1.3: Development of the MATSim-SUMO Integration 

The design of the MATSim-SUMO integration aims to achieve consistency in network representation and 

consistency in trips between the two models. For consistency in network representation, despite the 

potential strategy discussed in the previous subsection, one may encounter a series of issues related to 

different traffic network resolution levels between MATSim and SUMO. Because MATSim simulation is 
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usually used to observe traffic flow movements whereas SUMO simulation is used to model interactions 

of individual vehicles in detail, it is rational to only include major roads in MATSIM but also include roads 

at lower hierarchies (e.g., collector roads and minor roads) in the SUMO network. Such resolution 

differences can result in road disconnection betwen the SUMO areas and the MATSim area. Moreover, 

the differences can also create issues such as distributing traffic volumes from the MATSim area to the 

SUMO areas. Trip consistency requires ensuring consistency in the number of agents and 

departure/arrival times between the trips in the two simulation models. The number of agents from the 

MATSim area to the boundaries of each SUMO area should be equal to the number of agents traveling 

in the SUMO area. The time every agent from the MATSim area arrives at the boundaries of a SUMO 

area should be consistent with the agent’s departure time traveling within the SUMO area. Likewise, the 

time every agent traveling within a SUMO area arrives at the boundary of the MATSim area should be 

consistent with the agent’s departure time for traveling within the MATSim area. Given the above 

factors, we proposed the development framework shown in Figure 5 for MATSim-SUMO integration. 

To begin with, as displayed in Figure 5, a road network of the larger region, agents, and trips of all 

agents are prepared for MATSim; the road networks of the local areas and the schedules of traffic 

signals are the inputs for SUMO. As mentioned above, the network prepared for MATSim considers only 

the top-hierarchy road system, i.e., Interstate freeways, state highways, major arterial roads, etc.; each 

of the networks for SUMO additionally considers collector roads and minor roads. All the networks used 

in the two models are already calibrated. According to the prepared networks, a matching list is then 

generated through the process of link matching. Meanwhile, the initial MATSim simulation can be 

launched, given the prepared network, agents, and their trip plans. After the simulation, each simulated 

trip is divided into multiple trips, if the agent entered the SUMO areas, based on the retrieved link entry 

times and the link matching list; see Subsection 2.1.1. The divided trips are subsequently sent to the 

next processor to check whether each trip in SUMO is valid. The route validity check is necessary if the 

SUMO network is disconnected at certain locations. An example can be found in Figure 6; the 

Downtown Seattle network is extracted from a larger area in OpenStreetMap (OSM). Given an origin-

destination (OD) pair from node 1 to node 6, an agent could go through the path 1-2-3-4-5-6 in the 

MATSim network. However, in the Downtown Seattle area (the SUMO network), the agent cannot find a 

feasible path for the given OD pair since part of the MATSim path is not included in the SUMO network. 

Links that have this issue are mainly at the boundary of the SUMO network, i.e., in the highlighted red 

blocks on the left-hand side of the figure. In this case, before the SUMO simulation, the route validity 

check examines whether the OD pair of a trip is connected in SUMO. Trips with valid OD pairs are 

retained as the inputs for the SUMO simulation. The subsequent MATSim departure times are then 

updated on the basis of the arrival times simulated by SUMO. The updated trips and the trips without 

being split, i.e., those traveling only in the MATSim area, are combined as inputs into MATSim. Lastly, 

overall demand is finalized by running the MATSim simulation again with the updated plans. 
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Figure 5: Development Pipeline of MATSim-SUMO Integration 
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Figure 6: Disconnected Network 

Subsection 2.2: SUMO-Unity Integration 

As shown in Figure 1, the VIL simulation platform integrates a vehicle visualization model (Unity), a 

microscopic traffic simulation model (SUMO), and hardware. Message transfer between SUMO, Unity, 

and the hardware is managed by a control center, which also generates traffic control commands based 

on data gathered from the two models and the hardware. The SUMO-Unity integration in our VTD 

platform inherits the functionalities of the control center. Note that the hardware is not the main focus 

of this project and thus is omitted hereafter in this report. 

Subsection 2.2.1: Design of the SUMO-Unity Integration 

As just discussed, the design of communication between SUMO and Unity in our platform has the same 

design as that of the VIL platform [1]. The design is summarized in Figure 7. SUMO and Unity share their 

real-time information. On the one hand, the messages that are transmitted from SUMO to Unity can be 

categorized into static information and dynamic information. Static information is information 

determined before the SUMO simulation has been run, including the number of traffic signals, locations 

of traffic signals, and traffic network configuration. Dynamic information is updated during the 

simulation and contains traffic signal phases, ego-vehicle state, states of surrounding connected 

automated vehicles, states of surrounding human-driven vehicles, and states of other surrounding 

travelers. On the other hand, Unity sends information to remind SUMO whether the current information 

has been processed and whether it is up for processing the next time-step information.  

The information transferred between SUMO and Unity is managed by the message transmission 

processor in the control center. Once the overall system has been launched, SUMO first waits for Unity 
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to be initialized until Unity sends an idle message to SUMO. SUMO then sends the traffic states—

including traffic signal states, network information, and current states of the ego vehicle and its 

surrounding vehicles—to Unity. After receiving information from SUMO, Unity continues sending the 

message “cook” to SUMO when it is processing the visualization. Meanwhile, Unity simulates the ego 

vehicle sensing (e.g., camera and LiDAR) and sends the current sensed results to the control center for 

traffic control (e.g., signal control and vehicle-traffic control) at the incoming time step. Commands of 

signal control are then sent to SUMO to update the signal phases. Commands of vehicle-traffic control 

are also determined on the basis of the traffic states collected from SUMO. After traffic visualization and 

simulation have been completed, Unity then sends a message to SUMO to declare it is ready to process 

the updated traffic states. Next, SUMO updates the signal phases on the basis of the commands from 

the control center and surrounding vehicles’ states from its simulation. The overall steps then iterate 

until the end of the simulation.  

 

Figure 7: Detailed Design of SUMO-Unity Integration 
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Subsection 2.2.2: Development of the SUMO-Unity Integration 

Different from the development process proposed Ban et al. [1], the environment in Unity in the VTD 

platform is predetermined. In the VIL platform [1], Unity changes its visualization environment as ego 

vehicles move forward. When an ego vehicle meets a new road section, Unity adds a new road section 

to the visualization environment. Meanwhile, Unity removes the most aged road section if the capacity 

for accommodating road objects is full to avoid out-of-memory issues. However, this strategy has two 

main drawbacks. First, the overall platform can run slowly while waiting for Unity to generate road 

sections. Second, for a study area that has many special road connections and road types, it can be time-

consuming to design all the road modules and road connection types in advance. Therefore, we take a 

different strategy in this research when generating a traffic environment in the VTD platform. This 

strategy is to generate the environment before launching the platform.  

The environment is generated by the following steps: (i) target a traffic area, (ii) divide the area into 

multiple sub-areas if the area is too big, (iii) generate and compress each sub-area’s traffic environment, 

and (iv) combine all the areas into a base map. The purpose of dividing an area into multiple parts and 

generating a traffic environment one by one is to reduce memory usage while creating a traffic 

environment in each area. Compressing the generated traffic environment makes sure that the 

combined traffic environment will not consume too much memory. To generate a traffic environment, 

we apply the two packages RoadArchitect and CityGen3D in Unity. RoadArchitect is a package for 

creating road systems. It has a traffic signal system module and a road system module. The former 

includes options for traffic light poles, streetlights, and/or traffic lights coordinating with a controller to 

dynamically change traffic signal phases. The latter has road markings, right or left-turn markings, and 

one- to three-lane types. Nevertheless, the road system options are still limited to the traffic 

environment that has a complex road design, such as Downtown Seattle. This is where the CityGen3D 

package comes in. CityGen3D is a city generator that creates terrains, road systems, and amenities. It 

generates terrains and road systems directly from an OSM file, although it does not include traffic signal 

modules. Based on their capabilities, we create traffic signals using RoadArchitect while creating the 

basic terrains for vehicles and the road systems with CityGen3D. Figure 8 and Figure 9 show  examples 

of generating an environment for the northern region of Downtown Seattle. The region is divided into 

four parts along Harrison Street and Westlake Avenue N. We generate each part of the environment in 

Unity and combine all the parts, resulting in the traffic environment displayed in Figure 9 (c).  



 

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems  16 

 

Figure 8: An Example: Target Area in Downtown Seattle 

  

 
 

(a) OSM              (b) Environment in SUMO             (c) Environment in Unity 

Figure 9: Environments in OSM, SUMO, and Unity 

Because the Unity environment in the VTD platform is created before simulations have been run, we 

propose an approach for Unity to process the received messages. As shown in Figure 10, after 

initialization, Unity sends a message to claim that it is ready to take a new message. Then it begins to 

receive messages. The message sent from SUMO has two information pieces: information about the 

current signal phases and information about current vehicles. Unity extracts and processes the 

information pieces one by one. To process signal phase information, Unity sorts each traffic signal in a 
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clockwise direction starting from from the north. According to the sorting outcome, Unity then assigns 

each phase to the corresponding traffic light. To update vehicle states, the vehicle information piece is 

further decomposed into existing vehicles, departed vehicles, and newly arrived vehicles. Unity deletes 

vehicles that have departed the traffic system, generates new vehicle objects for those that have just 

joined the traffic system and moves them to their corresponding locations, and in the meantime moves 

existing vehicles to their updated locations. Note that vehicles are not just moved to their updated 

locations but are steered toward the updated directions, and updated steering angles are also extracted 

from the vehicle information. In the VTD platform, we retain the camera tracking feature that always 

stays a certain distance away from the ego vehicle, i.e., a half vehicle-length away from the ego vehicle 

with a half vehicle-height above ground at ten degrees downward.  
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Figure 10: Diagram of the Used Processor in Unity  

Figure 11 shows the implementation of the VTD platform environment. From left to right, it shows 

environments of the macroscopic traffic simulation (MATSim), the microscopic traffic simulation 

(SUMO), and the vehicle simulation and visualization (Unity). The Unity environment simulates a certain 

part of the SUMO environment, while SUMO simulates the Downtown Seattle region, which is a part of 

the MATSim environment. Following the implementation shown in Figure 11, Figure 12 shows five 

vehicles driving from the north to the Downtown Seattle region (SUMO area). SUMO simulates their 

movements in the Downtown Seattle area, as shown on the right-hand side. Two codes are presented in 

the SUMO simulation window shown in Figure 12. The bottom code refers to each vehicle’s ID, while the 
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code (“1.00” or “0.00”) right above the vehicle’s ID indicates whether this vehicle is from the MATSim 

environment. “1.00” indicates that the vehicle comes from the MATSim region, “0.00” otherwise. Since 

vehicles tagged “0.00” are not from the MATSim region, we may treat them as background vehicles. 

Figure 13 displays a case in which several vehicles move from the MATSim environment to the SUMO 

environment, and then return to the MATSim environment again. We use an underscore and a number 

to count how many times the vehicle goes through the SUMO region. In this case, both the highlighted 

vehicles go through the SUMO region once.  

 

 

Figure 11: VTD Platform Environment 
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Figure 12: VTD Platform Implementation 

 

 

Figure 13: VTD Platform Implementation (Cont’d) 
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Section 3: MATSim Calibration 

Subsection 3.1: Network Set-up 

Our simulation area in MATSim contains Seattle and Bellevue, which are connected by State Route 520 

(SR 520) and the Interstate 90 (I-90). We collected the network datasets, as shown in Figure 14, from the 

Seattle Department of Transportation (SDOT) and the Bellevue Department of Transportation, 

respectively. The two network datasets categorize road types in different ways, as listed in Table 2. We 

simplified the road types from their definitions into five categories: motorway, primary arterial, 

secondary arterial, tertiary arterial, and unclassified. The motorway contains the highway systems: the 

Interstate freeway and the state route freeway (Seattle), and the highway and highway ramp (Bellevue). 

The primary arterial contains the major road types of the two network systems: the principle arterial 

(Seattle) and the major arterial (Bellevue). The secondary arterial contains the collector and the minor 

arterial types in both network systems. The tertiary arterial included the country arterial in the Seattle 

road system and the other arterial in the Bellevue road system. Lastly, the unclassified category had the 

undesignated (Seattle) and the local (Bellevue). Other road types are out of interest in this report.  

The road types of the two networks were rearranged on the basis of the corresponding road categories 

discussed above. The networks were then connected by merging their SR 520 and the I-90 road links. 

We named the combined network the “Greater Seattle road network.” The Greater Seattle road 

network had 107,253 nodes and 223,800 one-way road edges, as shown in Figure 15. However, the 

network appeared too detailed for a macroscopic simulation, which might lead to excessive 

computation time for calibration and simulation. We therefore generated a new road network 

containing only the top-hierarchy roads, i.e., the motorways and the primary arterials. Roads that were 

not classified as the motorway or the primary arterial were mostly removed, but those connecting the 

top-hierarchy roads were retained. This was done with a two-step procedure. First, after retaining only 

the top-hierarchy roads, we located the broken roads by checking the network connectivity. The method 

we utilized for connectivity check was the Breath-First Search Traversal [9] (see Algorithm 1). Second, 

we manually connected the unreached top-hierarchy roads by putting back the lower-level road link. 

The procedure needed to be repeated multiple times until the overall network was connected. The 

Greater Seattle road network now have 34,631 road links, as shown in Figure 16.  
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(a) Seattle (b) Bellevue 

Figure 14: Collected Network Datasets 

 

Table 2: Road Types in the Combined Greater Seattle Network 

 Seattle Network Bellevue Network Combined Network 

Freeway  
Interstate freeway Highway 

Motorway 
State Route freeway Highway Ramp 

Arterial 

Principle arterial Major arterial Primary arterial 

Collector arterial 
Secondary arterial 

Minor arterial 

County arterial Other arterial Tertiary arterial 

Others 
Not designated Local Unclassified 

- Pedestrian corridor - 
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Figure 15:  Initial Network for the Greater Seattle Area 

 

Algorithm 1: Breath-First Search 

Input G graph, s any node in G 

function BFS(G, s): 

      Initialize Q be a queue and mark s as visited 

      Q.enqueue(s) 

      while Q is not empty: 

          v = Q.dequeue() 

          for all edges w in G.adjacentEdges(v): 

              if w is not marked as visited: 

                  Q.enqueue(w) 

                  mark w as visited 

 

Next, we added bus routes to the Greater Seattle road network. The added bus routes were the 25 

percent most productive routes evaluated by King County Metro (KCM) in 2014 [10]. The evaluation 

considered the measures of “rides per platform hour” and “passenger miles per platform mile in all time 

periods served,” which are clearly described in the 2014 Service Guidelines Report [10]. The high-

productivity routes in the Greater Seattle area include Routes 316, 41, 49, 71, 72, 73, 76, 77, B Line, D 

Line, E Line, 15EX, and 74EX. Extracting the route data from the General Transit Feed Specification 

https://transitfeeds.com/p/king-county-metro/73?p=5
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(GTFS) route dataset and the King County Metro (KCM) October schedule dataset of the same year, we 

considered just the former eleven routes because the last two routes were not included in the October 

schedule dataset, as displayed in Figure 17. More bus routes could be integrated into the MATSim 

model if needed, with proper calibrations. 

Although GTFS route data and bus schedules provide information that included directions, service 

locations, service schedules, and corresponding route IDs, the route data could not be directly used by 

the MATSim model, as they were neither in the road map format nor in the format of the MATSim 

schedule. Each bus route with its schedules needed to be mapped onto the MATSim network and 

MATSim schedules. Therefore, we followed the approach proposed by Poletti [11] to map the chosen 

bus routes onto the Greater Seattle road network in MATSim. 

 

 

Figure 16: Major Roads in Greater Seattle 

https://transitfeeds.com/p/king-county-metro/73?p=5
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Figure 17: Picked Bus Routes 

The mapping approach has five steps [11]: (i) sorting bus stops by route schedules, (ii) looking for link 

candidates that are closest to bus stops and recording the center of each link, (iii) generating a pseudo 

graph based on the recorded centers (see Figure 18 (a)), (iv) given travel distances, locating a pseudo 

path that has the least cost between each link pair (see Figure 18 (b)), and (v) creating a link sequence 

from the pseudo paths and adding an artificial link if any two consecutive bus stop pair had no link 

connection. After including the selected bus routes in the network, the final Greater Seattle network 

had 36,295 road edges, as shown in Figure 19. We next calibrated the network given travel plans (see 

Subsection 3.2: Network Calibration). 

 

(a) Pseudo graph from the recorded centers 

 

(b) Pseudo paths of each link pair 

Figure 18: Approach of Mapping Bus Routes on a Network [11] 
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Figure 19: Finalized Network for the Greater Seattle Area 

 

Subsection 3.2: Network Calibration 

We collected the demand data from the 2018 travel data provided by SDOT, the full-day travel plan from 

the Puget Sound Regional Council’s (PSRC) 2014 Activity-Based Travel Estimation, the October 2014 KCM 

schedule and 2014 GTFS data for bus routes, and the PSRC 2010 Traffic Analysis Zone (TAZ) data that 

contains the shapefiles describing the geometries of the TAZs. The MATSim calibration procedure is 

summarized in Figure 20, which is similar to the approach proposed by He et al. [12]. In this procedure, 

speeds and capacities were calibrated separately. 

Subsection 3.2.1: Travel Plan Setup 

We extracted home-based work trips that were self-driven or on buses for a typical day from the PSRC 

2014 activity-based trip data. We further retrieved populations in the following cases: (i) both trip origin 

and destination were in our study area, (ii) only the trip origin was in our study area, and (iii) only the 

trip destination was in our study area. We treated trips in the former two cases as resident trips and 

trips in the latter case as non-resident trips. The number of driving resident trips was about ten times 

the number of driving non-resident trips; the number of bus-riding resident trips was about three times 

the number of bus-riding non-resident trips. In previous studies [12, 13, 14, 15, 16], a macroscopic 

simulation typically had used a scaled population sample instead of the total population because of the 

cost of computation. Table 3 lists their simulated populations and scale factors.   
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Figure 20: Calibration Process 
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Table 3: Scale Factors and Simulated Populations 

City Scale factor Simulated population Source Year 

Zurich 10% 181,693 [17] 2008  

Zurich 10% 68,000 [19] 2011  

Berlin 10%  -  [16] 2019  

Paris 10%  -  [15] 2019  

New York 4%  ~350,000  [12] 2020  

According to the 2020 Census Redistricting Data released by the U.S. Census Bureau on August 12, 2020, 

Seattle had a population of 761,100. On the basis of the latest investigation by the City of Bellevue, 

Bellevue had a population of 145,300 in 2019. In total, the population of the study area was 906,400. 

We then used 8 percent as the scaled population factor and sampled a 72,512 population for calibration. 

Note that in the MATSim simulation, we deployed several TAZ gates around the Greater Seattle area to 

simulate those agents whose origins or destinations were located outside. The TAZ gates wee deployed 

on the basis of the TAZ, as displayed in Figure 21. We selected 40 TAZs from the 2010 King County TAZ 

data around the Greater Seattle area as the gates, as listed in Table 4 and shown in Figure 21. 

Table 4 TAZ Gates 

# TAZ ID # TAZ ID # TAZ ID # TAZ ID # TAZ ID 

1 1 9 17 17 832 25 856 33 1640 

2 2 10 19 18 837 26 857 34 1641 

3 3 11 824 19 838 27 858 35 1642 

4 6 12 825 20 839 28 861 36 1643 

5 9 13 826 21 840 29 1408 37 1644 

6 10 14 827 22 841 30 1450 38 1645 

7 13 15 829 23 854 31 1638 39 1646 

8 15 16 831 24 855 32 1639 40 1647 
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Figure 21: TAZ Gates around the Study Area 

 

Subsection 3.2.2: Network Calibration 

As discussed above, speed limits and capacities of network links were calibrated via the procedure 

shown in Figure 20. We split the INRIX data into speeds on arterials and speeds on highways. In the 

INRIX data, speeds from May 8th to 17th (weekdays) were used as the calibration references to compute 

speed factors for arterials and highways, respectively. The factors were then used for calibrating link 

capacities. In the capacity calibration, OD demands were prepared by considering only home-based 

work trips via the modes of driving or taking a bus. We extracted demands from the 2014 PSRC-

generated activity data. The demands were input for simulation. Next, the link volume outcomes from 

the simulation were compared with the observed hourly weekday volumes in 2018 collected from 

Sensys. If the average volume difference was within a certain range, the calibration was done; 

otherwise, we used the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm [13, 14, 

15] to update the link capacities. Note that for calibration, it is often preferable to collect observed data 

(volume, travel time, OD) for the same period of time (e.g., May 8 to 17, 2018). This was not possible for 

this large network because of limits in data availability. The major assumption here is that the OD 

demands in the area did not change much from 2014 to 2018.  

The INRIX links are shown in Figure 22. We extracted typical weekday hourly speed data in 2018 from 

May 8th to May 17th and took the average to compute average hourly link speeds. The hourly speeds 

were split into six time periods: 6:00 to 9:00 am, 9:00 am to 12:00 pm, 12:00 to 3:00 pm, 3:00 to 6:00 
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pm, 6:00 to 9:00 pm, and 9:00 pm to 6:00 am. Then we computed the speed factors during each time 

period for arterial links and highway links, respectively. The observed speeds for the six time periods are 

listed in Table 5. The network was then calibrated on the basis of the link speeds. The speed factors 

were computed with equation (1), where 𝑣type,time
obs  is the average observed speeds for a certain link 

type in a certain time period, 𝑣type
sim  refers to the simulation link speed for a certain link type in a certain 

time period, and 𝑓type,time
𝑣  is the speed factor to calibrate the simulation speed to the observed speed. 

𝑣type,time
obs = 𝑓type,time

𝑣 𝑣type
sim  , type ∈ {arterial, highway} , time ∈ {1,2,3,4,5,6} (1) 

 

 

Figure 22: INRIX Links and Volume Checkpoints 

 

Table 5: Observed Speed during Each Time Period and Link Types (mph) 

 6 - 9 a.m. 9 a.m. - 12 p.m. 12 - 3 p.m. 3 - 6 p.m. 6 - 9 p.m. 9 p.m. - 6 a.m. 

Highway 43.32 52.81 51.68 41.12 59.00 58.88 
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 6 - 9 a.m. 9 a.m. - 12 p.m. 12 - 3 p.m. 3 - 6 p.m. 6 - 9 p.m. 9 p.m. - 6 a.m. 

Arterials 26.28 28.82 28.57 22.78 29.62 34.62 

We used the 2018 Sensys traffic volume data to calibrate link capacities. To compare the observed 

traffic volumes with the simulated volumes, we first selected checkpoints that were intersected by 

major streets in Downtown Seattle, as shown in Figure 22 and listed in Table 6. Then the traffic volume 

data were processed into average observed hourly traffic volumes. These traffic volume data were 

classified into six groups by the six time periods discussed above. We used equation (2) to compute 

capacity factors. In this equation, 𝑐type,time
obs  is the average observed volume for a certain link type in a 

certain time period, 𝑐type
sim  is the simulation link volume for a certain link type in a certain time period, 

and 𝑓type,time
𝑐  is the capacity factor to calibrate the simulation speed to the observed speed. 

𝑐type,time
obs = 𝑓type,time

𝑐 𝑐type
sim  , type ∈ {arterial, highway} , time ∈ {1,2,3,4,5,6} (2) 

Table 6: Traffic Volume Checkpoints 

ID Checkpoint ID Checkpoint ID Checkpoint ID Checkpoint 

1 Ballard Bridge 7 
1st & Edgar 

Martinez 
13 

Western Ave & 
Elliott Ave 

19 Aurora & Harrison 

2 
Boren Ave & 
Madison St 

8 4th & Madison 14 
4th Ave S & 
Holgate St 

20 
1st Ave S & S 
Spokane St 

3 
Boren Ave & 

James St 
9 

Aurora Ave & 
Howe St 

15 
Westlake Ave N & 

Mercer St 
21 Aurora Bridge 

4 
2nd Ave & 

Blanchard St 
10 

Dexter Ave N & 
Mercer St 

16 
Fairview Ave N & 

Mercer St 
  

5 
4th Ave & 
Lenora St 

11 
1st Ave S & Holgate 

St 
17 

1st Ave S & S 
Stacy St 

  

6 
Alaskan & 
Madison 

12 Spokane St Viaduct 18 Fremont Bridge   

Then we adjusted the capacity factors several times until the average calibrated volume was close 

enough to the average observed traffic volume. The adjustment used the SPSA algorithm, as shown in 

Algorithm 2. In this algorithm, we defined capacity factors as theta_initial. Given the SPSA coefficients 
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beta = 0.602, gamma = 0.101, A = 3500, the gain sequence of step size a = 0.16, and the decreasing 

sequence of positive number c = 0.05, we did the following: (i) computed the Bernoulli variables delta, 

(ii) updated a and c, (iii) approximated the gradient at the current capacity factor, (iv) checked whether 

the capacity factor converged, and (v) quit if it converged; otherwise, went to step (i). We ran this 

algorithm multiple times until the difference between the average calibrated capacity and the average 

observed was below 12 percent (see Figure 23). 

 

Figure 23: Link Capacity Errors with Calibration Runs 

The computed speed factors and capacity factors are listed in Table 7 and Table 8, respectively. The 

results of calibration for link speed limits and capacities are shown in Figure 24 and Figure 25, 

respectively. The average difference between the calibrated highway speeds and the observed speeds 

Algorithm 2: SPSA Algorithm [13, 14, 15] 

Input initial link capacities as a list theta_initial 

Input constant beta, gamma, a, A, c, THRESHOLD, MAXITER 

Initialize iter = 0; diff = inf 

Initialize theta(0) = theta_initial 

Initialize delta = in p-dimension filled with zeros  

function SPSA(beta, gamma, a, A, c, f_initial): 

      while diff > THRESHOLD and iter <= MAXITER: 

          delta(j):= generated by Monte Carlo,  

                     each element is independently from Bernoulli distribution  

                     with probability 0.5 

          a(iter) := a / (iter + A)^beta 

          c(iter) := c /(iter)^gamma 

          g(iter) := gradient( y(theta(iter) + c(iter) * delta), 

                               y(theta(iter) - c(iter) * delta), c(iter) ) 

          theta(iter + 1) = theta(iter) – a(iter) * g(iter) 

          diff = abs( a(iter) * g(iter) ) 

          j += 1 
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was 8.09 percent; the average difference between the calibrated arterial speeds and the observed 

arterial speeds was 9.87 percent; and the average difference between the calibrated capacities and the 

observed capacities was 11.55 percent. 

Table 7: Speed Factors 

 6 - 9 a.m. 9 a.m. - 12 p.m. 12 - 3 p.m. 3 - 6 p.m. 6 - 9 p.m. 9 p.m. - 6 a.m. 

Highway 1.10  1.08  1.09  1.09  1.08  1.10  

Arterials 1.16  1.24  1.16  1.20  1.21  1.21  

 

(a) Speed Calibration 

 

(b) Difference between the Simulated and the Calibrated 

Figure 24: Speed Calibration Result 
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Table 8: Capacity Factors 

 6 - 9 a.m. 9 a.m. - 12 p.m. 12 - 3 p.m. 3 - 6 p.m. 6 - 9 p.m. 9 p.m. - 6 a.m. 

 0.96 1.43 0.73 0.69 1.06 0.51 

 

 

(a) Capacity Calibration 

 

(b) Difference between the Simulated and the Calibrated 

Figure 25: Capacity Calibration Result  
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Section 4: SUMO Calibration 

Subsection 4.1: Network Set-up 

We constructed the SUMO network in the Downtown Seattle area on the basis of the OSM's digital road 

network data. The network data were then converted to SUMO by using the netconvert function, a 

command line application that imports digital road networks from various resources and generates road 

networks for SUMO [20]. The range map and the SUMO simulation network are shown in Figure 26 

(north to Mercer Street, south to South Atlantic St/Edgar Martine Dt St, west to Alaskan Way and east to 

12th Ave). The built-in SUMO network consisted of three major inputs: (i) the network file (.net.xml), the 

basic network file covering network information about edges, lanes, junctions and right-of-way (ROW), 

and connections; (ii) the route file (.rou.xml), a routes description file covering vehicle routes, pedestrian 

routes, and public transit routes (bus and link light rail); and (iii) the additional file (.add.xml), a further 

description file covering the TAZs, bus stops, and traffic signals. In addition, the traffic mode included in 

the SUMO simulation covered passenger vehicles, public buses, pedestrians, and Link light rail.  

  

Figure 26: Range Map of SUMO Simulation OpenStreetMap Contributors (Left), SUMO 

Simulation (Right) 

 

Subsection 4.1.1 Network File Set-up 

The SUMO network file “describes the traffic-related part of a map, the roads and intersections the 

simulated vehicles and pedestrians run along or across” [21]. Network file cleaning and editing, given 
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the converted OSM network, were then conducted on the basis of specific physical characteristics, 

including number of lanes, intersection connections, road widths, speed limits, restricted lanes, 

crosswalks, and junction merges. Details of the features of the cleaned SUMO network are summarized 

in Table 9.  

Table 9: Network Design in the SUMO Simulation 

Main features Detailed design 
# of simulated 

elements in SUMO 

Edges and 

Lanes 

Edge is the connection between two nodes, each edge 

consists of a certain number of lanes. The edge and lane 

cover the road information includes: 

• Road length 

• Speed limit 

• Road priority 

24259 edges for 

vehicles, (including 

bus) 

5343 edges for 

pedestrians, 

50 edges for link light 

rail 

Junctions and 

ROW 

Junction represents the area where different streams 

(edges) cross, covering the ROW rules of vehicles crossing 

the intersection.  

7119 junctions 

Connections 

The connections describe the connection between each 

lane, i.e., which outgoing lanes can be reached from an 

incoming lane. 

69283 connections 

 

Subsection 4.1.2 Route File Set-up 

The route file input in the SUMO simulation covered three types of routes: vehicle, pedestrian, and 

public transit (bus and Link light rail). Both vehicle and pedestrian routes were generated on the basis of 

the OD demand estimated by SoundCast, a travel demand model system built for the Puget Sound 

Region [22]. The starting location of a vehicle or pedestrian was generated randomly based on the 

SUMO default settings. To generate the route file, we used OD2TRIPS, a SUMO function that imports OD 
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matrices and converts them into single vehicle/pedestrian trips. The public transit routes were 

constructed from GTFS data [23]. As a result, 62 public transit routes (including one route for Link light 

rail) were included in the SUMO network. Details of the route design are listed in Table 10. 

Table 10: Route Design in the SUMO Simulation 

Type of routes Detailed Design 

Vehicle 

Routes are defined on the basis of the features below. The passing routes given 

the O/D TAZ were generated automatically based on the shortest path. 

• fromTAZ (origin) 

• toTAZ (destination) 

• from (starting edge in the origin TAZ) 

• to (ending edge in the destination TAZ) 

• depart (Depart time) 

• departLane (the departure lane in the starting edge) 

• departSpeed (the departure speed) 

Pedestrian 

Routes are defined on the basis of the features below. The passing routes given 

the O/D TAZ were generated automatically based on the shortest path. 

• from (starting pedestrian lane in the origin TAZ) 

• to (ending pedestrian lane in the destination TAZ) 

• depart (Depart time) 

• arrivalPos (detailed position on the starting pedestrian lane) 

• departPos (Departure position on the ending pedestrian lane) 

Public Transit 

Routes are defined on the basis of the features below. 

• type (vehicle type) 

• from (starting edge of the bus route) 

• to (ending edge of the bus route) 

• depart (departure time at the first bus stop) 

• busStop (passed bus stops) 

• until (for each bus stop, the departure time at the current bus stop) 
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Subsection 4.1.3 Additional File Set-up 

The additional file input into the SUMO simulation consisted of three components: TAZs, bus stops, and 

traffic signals. The TAZs and bus stops were defined in the same .add.xml file. A TAZ was geo-coded on 

the basis of the traffic analysis zone defined by the PSRC. Meanwhile, bus stops and Link light rail 

stations were geo-coded on the basis of GTFS data. Detailed settings for the TAZs and bus stops are 

summarized in Table 11. Traffic signal information was provided by SDOT, which uses Synchro as the 

design tool [24]. Therefore, we proposed a method to convert the traffic signal timing data from Synchro 

for use in SUMO. The remaining subsections discuss the traffic signal conversion in detail. 

Table 11: TAZ and Bus Stop Design in SUMO Simulation 

Type of 

additions 
Detailed Design # of simulated elements in SUMO 

TAZ 

TAZs in SUMO is described by the lists of source 

and destination edges, covering the edge and 

node information. 

180 TAZs, including 10 pseudo TAZs 

for destination/origin outside the 

Simulation range. 

Bus Stop 

The bus stop is defined by the features below, 

• lane (the name of the lane the bus stop 

located at) 

• startPos (the begin position on the lane 

in meters) 

• endPos (the end position on the lane in 

meters) 

• friendlyPos (whether invalid stop 

position should be corrected 

automatically) 

270 bus stops 

For traffic signal set-ups, we converted the signal timing plans from Synchro for use in SUMO. Synchro is 

based on the Highway Capacity Manual’s (HCM) 6th Edition for the design of signalized intersections, 

unsignalized intersections, and roundabouts, which provides users more options for signal timing 

designs [24]. On the other hand, SUMO is an open source, microscopic and continuous traffic simulation 
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package that was initially designed for large-scale networks. It allows modeling of intermodal traffic 

systems covering road vehicles, public transport, and pedestrians.  

Because of their distinctive characteristics, Synchro and SUMO have been used to explore transportation 

problems from separate scales and perspectives. For instance, several studies [25, 26] have used 

Synchro to test various traffic signal timing algorithms and have used SUMO to test the corresponding 

impacts on vehicles. Most studies have focused on small areas, such as a single corridor with a limited 

number of intersections, which can easily be built manually. Few studies have used both Synchro and 

SUMO for a large road network. One of the leading reasons is that it can become a great challenge when 

the study area is expanded to a large range for various simulation platforms. A large-scale network 

simulation always brings more variation and complexity, given multiple types of signal timing plans, 

intersections, and transportation modes. Figure 27, as an example, displays diverse intersections in our 

SUMO simulation. Such variation increases the complexity of traffic signal conversion from Synchro to 

SUMO. 

 

Figure 27: Diverse Intersections Display in SUMO Simulation 

To convert traffic signals from Synchro to SUMO, we first compared the input network features to better 

understand the mechanisms behind the two simulation packages. The network data structure of 

Synchro can be extracted from a single CSV file. Specializing in traffic signal optimization at a 

macroscopic level, the network features of Synchro mainly focus on traffic signal settings. The network 

data of Synchro consist of timing/signing, phasing, lanes, volumes, and detectors. SUMO, on the other 

hand, is constructed on the basis of multiple xml files. Each file covers distinctive network features from 

Synchro, including road networks, vehicle routes, and additional features such as advanced signal timing 
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plans. By checking the main network features and corresponding sub-features, we identified the 

features that were transferrable between SUMO and Synchro, summarized in Table 12. 

Table 12: Similar Feature Comparison between Synchro and SUMO 

Settings 
Synchro SUMO 

Features Details Features Details 

Road 

Network 

Links 

Road setting, including road 

name, direction (e.g., north 

bound), road distance, 

grade, number of lanes, etc. 

Edge 

From .net.xml file, 

including road type 

(allowed vehicle class), 

priority, number of lanes, 

etc. 

Lanes 

Sub feature of link, a link 

with one direction can cover 

multiple lanes. Including 

speed limit, width, and 

storage etc. 

Lane 

From .net.xml file, sub-

feature of edge, including 

road distance (length), 

coordinates and allowed 

vehicle classes, etc.  

Intersection Nodes 

The position of each 

intersection, including X, Y, 

Z coordinates, intersection 

type, etc. 

 

 

 

 

 

 

Junction 

From .net.xml file, 

represents the area where 

various streams cross, 

covering the right-of-way 

rules, X, Y coordinates, and 

connected lanes, etc. 

connection 

From .net.xml file, 

describes the connection 

between two lanes (from 

lanes and to lanes), 

including the direction of 

the connection (e.g., 

straight, left), the state 
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Settings 
Synchro SUMO 

Features Details Features Details 

(e.g., major link), and 

corresponding signals, etc. 

Traffic 

signal 

Timeplans 

The signal timing plans, 

covering signal control 

types, cycle length, offset, 

etc. 

tlLogic 

From .net.xml/.add.xml 

file, defines the phases of 

traffic light, covering 

control types, offset, and 

phase index, etc. 
Phases 

The phasing data specifically 

for ring barrier control, 

including BRP (barrier, ring 

and position), minimum and 

maximum green time, 

yellow time and red time, 

etc. 

Simulation Network 

Basic simulation settings, 

normally applied for the 

entire simulation network, 

including all red time, 

vehicle length, and scenario 

date and time, etc. 

Configuration 

Defines under .sumocfg 

file, including the basic 

config for sumo 

simulation, including the 

input and output .xml files, 

simulation time, and 

devices, etc.  

On the basis of the compared features, we identified the feasibility and limitations of the simulation 

conversion. First, both road network and signal timing plans under the two simulations had similar 

features, while some of them were defined in separate ways. Nevertheless, a direct transfer based on 

feature mapping was not viable, as the features were not matched one-to-one. For instance, for traffic 

lights that control a single intersection, the traffic timing plans in Synchro use the road direction (e.g., 

northbound). However, SUMO [27] applies a clockwise pattern from 0 to 12 o’clock, with right turns 

ordered before straight movements and left turns. Second, simulation conversion from a macroscopic 

level to a microscopic level faces more challenges with missing features. As shown in Table 12, although 

network structures in SUMO and Synchro are similar (regarding lanes, links, and intersections), some 
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sub-features such as road type are missing in Synchro. Such conversion challenges between different 

simulation scales increase for a large traffic network. The larger the simulation area, the greater the 

unmatched error and noise, making network checking and cleaning time-consuming. Moreover, 

manually revising traffic signals between the two platforms for a large road network might even be 

harder, given the various signal control types and various ways of defining signal timing. Therefore, it 

was critical and necessary to explore a viable approach to efficiently converting traffic signal data 

between the two simulation packages.  

We first learned the traffic signal settings of both Synchro and SUMO. The traffic signal design for a 

specific intersection in Synchro is displayed in Figure 28. In comparison to SUMO, traffic signal settings in 

Synchro are more intuitive. Synchro designs timing settings for each direction (e.g., NBL, northbound 

left), covering the minimum initial, minimum split, yellow, and all-red time. SUMO, on the other hand, 

defines traffic signals following a clockwise order rather than traffic direction. Each feature within a 

phase describes the state of one signal of the traffic light, and each link has the current state at each 

phase. As shown in Figure 29, the traffic signal in SUMO is defined on the basis of a clockwise circle 

starting in the northern direction. Each phase includes the traffic light states, minimum and maximum 

duration, etc.  

 

Figure 28 Signal Timing Settings in Synchro [28] 
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Figure 29: Traffic Signal Settings in SUMO [27] 

A detailed traffic signal feature comparison between SUMO and Synchro is summarized in Table 13. It 

shows that most of the features between the two simulations could be well matched. However, 

variation occurred in some sub-features and default settings. For instance, Synchro applies ring barrier 

control for traffic signal design, whereas SUMO uses fixed traffic timing plans as the default. Therefore, 

traffic signal conversion required a bridge that would enables the feature information between the two 

platforms to be transferrable. We proposed a four-step approach that could automatically translate 

selected information between the two simulation platforms. 

Table 13: Traffic Signal Feature Comparison 

Item Synchro SUMO 

Data source 

• Timeplans 

• Phases 

• Lanes 

• Links 

• tlLogic 

• Connection 

• Edge 

Direction 

Direction for each phase is 

specified as bound + direction 

(NBL, NBT, NBR), bound 

information varies, such as NW, 

NE, NB 

No defined bound information, 

direction in SUMO means straight 

(s), left (l), right(r), etc. 
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Item Synchro SUMO 

Phases 

Designed based on the BRP 

(barrier, ring and position) with 

time on the horizontal axis and 

each row describes the states for 

one signal.  

Each phase includes transition 

(red/yellow) between green 

phases. 

Each phase describes all signal states 

that last for a fixed duration with 

time on the vertical axis. 

Transition phase can be made up of 

multiple intermediate phases. 

Detector Detector is not specified 
Detector information needs to be 

specified 

Pedestrian button Designed in Timeplans Needs to be programmed use TraCI 

The four-step approach includes the following: (i) intersection mapping, (ii) signal direction bound 

mapping, (iii) features extraction and mapping, and (iv) phase mapping. This method is under the 

prerequisite that the network has been successfully built with correct and clean road features within 

each simulation platform. Step (i) to step (iii) compose the intersection feature extraction and mapping, 

while step (iv) specifically focuses on the traffic signal phase and timing conversion. Step (i) involves 

mapping the intersection IDs between SUMO and Synchro. Each intersection from the two simulations 

generates a unique ID, and the intersection mapping prevents the traffic signal conversion conducted at 

the right (matched) intersections. Note that manual mapping is still needed when the intersection ID 

between the two simulation platforms is not defined in the same way.  

Step (ii) involves mapping the signal direction. As summarized in Table 13, traffic signal information in 

SUMO does not cover the traffic direction; instead, signal status for each lane is defined in a clockwise 

order, with the pedestrian phase defined after the vehicular phase. The 0 o’clock (starting direction) is 

often located at due north (i.e., the southbound direction, SB, shown in Figure 30) under the condition 

that the intersection is built as a positive cross. Given that intersections are constructed in different 

shapes and with various angles in the actual road network, identifying the starting direction as well as 

the traffic direction in SUMO became essential for successful and smooth signal direction mapping. To 

achieve this, we used the shape information from the connected lanes of each intersection. More 

specifically, the last two coordinates were selected from each incoming edge of the intersection to 
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calculate the traffic direction (Figure 30 (b)). As shown Figure 30 (a), after determining  the traffic signal 

timing order, we estimated vehicular direction. First, we categorized the direction into four types 

(eastbound as EB, southbound as SB, westbound as WB, and northbound as NB). Then we identified the 

most possible direction based on the slope and coordinate difference of the chosen coordinates. Given 

that direction in Synchro is defined in multiple ways (e.g., not only NB, but also NE and NW), the final 

direction was estimated on the basis of the order of Figure 30 (c)).  With the traffic direction and 

direction order, the direction was assigned on the basis of both the lane direction in SUMO (under the 

Connection feature) and the traffic direction in Synchro, following the direction order from right turn 

(R), through (T), and left turn (L). Having estimated the direction of vehicles, we then estimated 

pedestrian direction. Unlike vehicular direction, pedestrians have no unique direction, as they are able 

to cross an intersection from EB to WB and vice versa. On the other hand, the order of the pedestrian 

direction begins with the crossing direction in SUMO of the first vehicular direction. Thus, the 

corresponding crossing vehicular edges were identified to estimate the pedestrian direction. 

 

 
 (b) Coordinate Selection 

 

(a) Flow Chart of Direction Identification (c) Direction Order 

Figure 30: Direction Identification  

Step (iii) involves transfering and inspecting all the other features/sub-features from the two simulation 

platforms for further conversion. Most of the features were selected under the phase feature of Synchro 
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and the tlLogic feature of SUMO, covering traffic signal control type (e.g., fixed timing, actuated timing), 

offset, the appropriated BRP, minimum and maximum green time for each phase, yellow and all-red 

times, and time settings for the pedestrian interval. Such feature information was then transferred to 

the corresponding intersections. Nevertheless, not every intersection allowes a perfect mapping (with 

all feature information well mapped from Synchro to SUMO), especially the directions, for instance, 

missing the right/left turn at a specific direction. These variances need to be inspected and corrected to 

guarantee a successful traffic signal simulation conversion. 

With traffic signal feature information mapped, step (iv) involves assigning the signal phase order and 

timing for each intersection. The format of signal phase settings varies in SUMO and Synchro. Synchro 

has a built-in Ring-and-Barrier Designer to simulate the signal ring-barrier controller. Once the user 

assigns the phase number to the BRP field, signal phase transition in Synchro is conducted automatically. 

On the other hand, SUMO uses National Electrical Manufacturers Association (NEMA) type logic to 

manage ring-barrier control signals [29]. The NEMA phase setting example is displayed in Figure 31. It 

requires features including the phase number of each ring, barrier phase numbers, recall time for the 

signals, and phase definitions. For phase definitions, it requires the minimum and maximum duration for 

each green phase, timing for yellow and red phases, and vehicle extension timing in seconds.  

<add> 
    <tlLogic id="2881" offset="10" programID="NEMA" type="NEMA"> 
        <param key="detector-length" value="20"/> 
        <param key="detector-length-leftTurnLane" value="10"/> 
        <param key="total-cycle-length" value="120"/> 
        <param key="ring1" value="1,2,0,4"/> 
        <param key="ring2" value="0,6,0,4"/> 
        <param key="barrierPhases" value="2,6"/> 
        <param key="coordinate-mode" value="true"/> 
        <param key="barrier2Phases" value="4,4"/> 
        <param key="minRecall" value="2,6"/> 
        <param key="maxRecall" value=""/> 
        <param key="whetherOutputState" value="true"/> 
        <param key="fixForceOff" value="false"/> 
 
        <phase duration="99" minDur="6"  maxDur="16" vehext="2" yellow="4" red="1" name="1" 
state="srrrrrrGGrrr"/> 
        <phase duration="99" minDur="10" maxDur="67" vehext="2" yellow="4" red="1" name="2" 
state="srrrrrrrrGGG"/> 
        <phase duration="99" minDur="10" maxDur="22" vehext="2" yellow="3.5" red="1.5" 
name="4" state="GGGGGrrrrrrr"/> 
        <phase duration="99" minDur="10" maxDur="88" vehext="2" yellow="4" red="1" name="6" 
state="srrrrGGrrrrr"/> 

    </tlLogic> 

Figure 31: Ring Barrier Control Example in SUMO [29] 
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Subsection 4.2: Network Calibration 

We calibrated the SUMO network to the observed traffic volumes and travel times.Three data resources 

were applied for calibration, including the OD demands estimated by SoundCast as simulation input, 

TRACFLOW data from WSDOT (highway traffic volumes), and NPMRDS (National Performance 

Management Research Data Set) data (highway and local street travel time) as the field measurements. 

The objective of the network calibration was to acquire the best match between model performance 

estimates and field measurements. Parallel to this, the Wisconsin DOT freeway model calibration criteria 

were applied as our calibration targets [30]. The calibration criteria are shown in Table 14. 

Table 14: Wisconsin DOT Freeway Model Calibration Criteria [30] 

Criteria and Measures Calibration Acceptance Targets 

GEH Statistic < 5 for Individual Link Flows > 85% of cases 

Travel Times, Model Versus Observed 

Journey Times, Network: Within 15% (or 1 min, 

if higher) 

> 85% of cases 

The GEH statistic was computed as follows: 

𝐺𝐸𝐻 =  √
(𝐸 − 𝑉)2

(𝐸 + 𝑉)2 

where 𝐸 denotes the model estimated volume while 𝑉 denotes the field count. 

We then conducted the SUMO network calibration through various perspectives, including network 

features, car-following model parameters, and  OD demand, as summarized in Table 15. The estimated 

data from the SUMO simulation were collected by using the edge/lane-based traffic measures [31]. The 

data collection covered the traffic volume and travel time information for each edge, including the 

number of vehicles emitted onto the edge/lane within the settled time interval (departed), the number 

of vehicles that finished their routes on the edge/lane (arrived), the number of vehicles that entered the 

edge/lane from upstream (entered), the number of vehicles that left the edge/lane from downstream 

(left), and times needed to pass the edge/lane (traveltime).  
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Table 15: Tune Features for SUMO Calibration 

Category Focused features Description 

Network structure 

Speed validation 

Speed limit check along each 

edge, especially the local street 

for better calibration 

Lane configuration 

Specifically for the lanes that 

encounter unusual congestion 

(compared with actual traffic), 

including lane priority, edge 

direction, route connectivity. 

Signal & Stop sign configuration 

Focused on the lane priority 

(yield or zipper) of the merge 

intersection/merge ramp. 

Vehicles 

Car following model parameter 

The car-following model related 

parameters for calibration 

mainly include tau (the driver’s 

desired time head way) and 

sigma (the drive imperfection). 

Basic attributes 

Including acceleration and 

deceleration ability check of 

vehicles, and the minimum gap 

when standing. 

OD demand Trip arrival time 

For each given OD pair, check 

the estimated trip arrival time 

based on the SoundCast 

demand and revise the routes 

for better calibration. 
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Category Focused features Description 

OD input 

Specifically for the 

origin/destination located on 

the rim of the simulation 

network since it connects with 

the inbound/outbound 

demand. 

The calibration results are shown in Table 16. The SUMO calibration was conducted with 15 road 

segments selected for the highway traffic volume calibration and 25 road segments chosen for the local 

street travel time calibration. As Table 16 shows, 80 percent of the traffic volumes and 50 percent of the 

travel times were well calibrated based on the calibration criteria in Table 14. The calibration 

performance could be further improved, which however requires more time and computational 

resources. 

Table 16: SUMO Calibration Results 

Index 
Test Road 

Segment ID* 
Road 
name 

Peak hour 
expected 

Peak hour 
simulated 

GEH Calibrated 
Test 
Features 

1 4722443 
I-5 SB Exit 
Stewart 

770 698 7.06267 TRUE Volume 

2 4755219#0 
I-5 SB 

Enter Yale 
Ave 

1110 1020 7.605634 TRUE Volume 

3 96260970 
I-5 SB Exit 
Union St 

1020 1413 126.961776 FALSE Volume 

4 96260967 
I-5 SB Exit 

6th Ave 
1470 1686 29.56654 TRUE Volume 

8 35824613 
I-5 SB CD 

Enter 
Spring 

1070 1526 160.197227 FALSE Volume 

6 4748988 
I-5 SB CD 

Exit 
Dearborn 

200 288 31.737705 TRUE Volume 

7 4748998 
I-5 SB CD 
Exit 4th 

Ave S 
420 541 30.470343 FALSE Volume 

8 4712866 
I-5 NB CD 

Enter 
Spokane 

410 381 2.126422 TRUE Volume 
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Index 
Test Road 

Segment ID* 
Road 
name 

Peak hour 
expected 

Peak hour 
simulated 

GEH Calibrated 
Test 
Features 

9 402084478 
I-5 NB CD 

After 
Spokane 

1070 1071 0.000934 TRUE Volume 

10 4848517 
I-5 NB CD 

Enter 
Dearborn 

370 410 4.102564 TRUE Volume 

11 105899959 
I-5 NB CD 
Exit James 

1170 1012 22.88176 TRUE Volume 

12 56178982 
I-5 NB Exit 

Seneca 
960 1021 3.756689 TRUE Volume 

13 171121268 
I-5 NB 

Enter Univ 
St 

530 516 0.374761 TRUE Volume 

14 436165683#0 
I-5 NB Exit 
Olive Way 

700 684 0.369942 TRUE Volume 

15 621342731 
I-5 NB 

Enter Olive 
Way 

1150 1184 0.990574 TRUE Volume 

16 114+08028 
Madison 

St 
16.12 15.427 0.030447 TRUE 

Travel 
time 

17 114+08088 Battery St 32.75 31.618889 0.039753 TRUE 
Travel 
time 

18 114+08224 Marion St 38.21 60.567778 10.121107 FALSE 
Travel 
time 

19 114+08225 Marion St 34.3 59.222222 13.282772 FALSE 
Travel 
time 

20 114+08542 5th Ave 211.18 133.438 35.075467 FALSE 
Travel 
time 

21 114+08571 6th Ave 35.45 34.57 0.022119 TRUE 
Travel 
time 

22 114+10562 James St 39.61 33.262 1.105969 TRUE 
Travel 
time 

23 114+10563 James St 125.31 197.37 32.184478 FALSE 
Travel 
time 

24 114+11093 Pike St 83.4 63.135 5.60508 FALSE 
Travel 
time 

25 114+11102 Pike St 90.08 26.535 69.252961 FALSE 
Travel 
time 

26 114-08015 
2nd Ave Ext 

S 
227.3 136.936 44.837152 FALSE 

Travel 
time 

27 114-08018 2nd Ave 13.43 12.898 0.0215 TRUE 
Travel 
time 

28 114-08093 Wall St 31.24 51.361667 9.803228 FALSE 
Travel 
time 
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Index 
Test Road 

Segment ID* 
Road 
name 

Peak hour 
expected 

Peak hour 
simulated 

GEH Calibrated 
Test 
Features 

29 114-08208 
Madison 

St 
45.03 55.7425 2.277559 TRUE 

Travel 
time 

30 114-08209 
Madison 

St 
26.78 44.023 8.398544 FALSE 

Travel 
time 

31 114-10098 
Columbia 

St 
6.43 9.865 1.448202 TRUE 

Travel 
time 

32 114-10501 
S Jackson 

St 
69.89 51.298889 5.703979 FALSE 

Travel 
time 

33 114-10502 
S Jackson 

St 
27.26 5.653333 28.368324 FALSE 

Travel 
time 

34 114-10560 James St 39.09 59.9275 8.770195 FALSE 
Travel 
time 

35 114-10561 James St 51.21 45.498889 0.674536 TRUE 
Travel 
time 

36 114-10562 James St 118.61 173.628 20.715857 FALSE 
Travel 
time 

37 114-11101 Pine St 87.85 95.1875 0.588283 TRUE 
Travel 
time 

38 114-11376 Stewart St 40.46 81.0775 27.148515 FALSE 
Travel 
time 

39 114-11557 Pine St 73 63.106 1.438456 TRUE 
Travel 
time 

40 114-15723 Pine St 62.76 63.64375 0.012357 TRUE 
Travel 
time 

41 114N10562 James St 13.6 22.385 4.289355 TRUE 
Travel 
time 

* for traffic volume, the road segment ID is the sumo edge id, for travel time is the NPMRDS road segment ID 
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Section 5: Testing Results  

We show in this section some testing results using the developed multi-scale simulation platform, 

including multiscale traffic-vehicle control algorithms and learning traffic dynamics. 

Subsection 5.1: Testing of a Multiscale Signal-Vehicle Coupled Control Algorithm 

We built a multi-scale, signal-vehicle coupled control framework to improve network-wide urban traffic 

performance and used the VTD platform to test the proposed algorithm.  The urban transportation 

system is multi-modal and multi-scale both spatially and temporally. For example, when signal control is 

at a macroscopic spatial scale (i.e., intersection scale) and a slower temporal scale (i.e., signals should be 

adjusted at least in seconds to avoid confusion), vehicle control is at a microscopic spatial scale and a 

faster temporal scale (i.e., vehicles should be controlled with a high frequency to guarantee safety). In 

this test case, we built a slower-scale signal control model to generate optimal signal phases based on a 

mixed integer, nonlinear programming formulation, and a faster-scale vehicle control model to generate 

longitudinal vehicle accelerations based on a nonlinear programming formulation [32]. The goal of signal 

control is to maximize total vehicle throughput, and the goal of vehicle control is to minimize fuel 

consumption while maintaining acceptable travel time. In addition, the slower-scale signal control 

algorithm will generate reference trajectories for all surrounding vehicles at slower-scale time points 

(i.e., waypoints with larger time steps), and the faster-scale vehicle control algorithm will allow vehicles 

to achieve the same trajectories but with a much smaller faster-scale time step.  

The multi-scale signal-vehicle coupled control algorithm was first developed for a single intersection and 

fully connected and autonomous vehicle (CAV) penetration (so that we could control all the vehicles). 

Then, we extended it to multiple intersections and mixed traffic flow of both CAVs and human-driven 

vehicles (HDVs, which we cannot control). For the multiple intersections scenario, we used the 

information sharing technique to enable communications between neighboring intersections and then 

developed a revised, distributed multi-scale, signal-vehicle coupled control algorithm. Specifically, for a 

specific intersection, we collected the predicted vehicle trajectories generated by neighboring 

intersections and calculated the arrival times of those vehicles. Then we integrated those upcoming 

vehicles with the vehicles that were currently and physically on the surrounding roads to formulate a 

new, slower-scale problem. In this way, the current intersection algorithm could generate optimal signal 

phases by knowing the incoming vehicles. For the mixed traffic flow scenario, we designed a linear 

interpolation method to estimate the HDVs’ states, based on which we formulated the slower-scale 

problem in the same way as above. Then we developed a safety check mechanism to adjust the 

commands generated by the faster-scale problem. Finally, we combined the two techniques, i.e., 

information sharing and the safety check, into an integrated, multi-scale, signal-vehicle coupled control 

framework that can be used for real-world traffic networks. We omit the technical details here for the 
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sake of brevity (also because this was not the focus of this project). Below wee illustrate the testing of 

the proposed framework using the VTD platform developed in this study. 

As shown in Figure 32, we used a four-by-six-block downtown network in Seattle to test the multi-scale 

signal-vehicle coupled control algorithm. There are different road types (e.g., one-way and two-way 

roads) in this network, leading to six distinct types of intersection geometries. In Figure 32, the numbers 

in the circles in the SUMO networks represent the types of intersections. We extracted the OD volume 

data from the bigger Seattle-wide SUMO simulation network (as discussed in the previous chapter). The 

number of OD pairs is large, and we omit the detailed OD volumes here for the sake of brevity. To have 

an intuitive understanding, the maximum volume is 332 veh/hour from the upper right, north incoming 

road to the bottom right, south outgoing road. 

 

Figure 32: The Tested Downtown Seattle Area 

We compared the proposed multi-scale signal-vehicle coupled control algorithm (denoted as Multiscale) 

with the actuated signal control (denoted as Actuated). Table 16 shows the performance of these two 

control methods. Note that for the Actuated method, the vehicles were controlled by SUMO’s default 

car-following models. We used the average waiting time, time loss, queue length, and fuel consumption 

as the evaluation indexes. The waiting time (in seconds) was defined as the number of seconds a vehicle 

had a speed of less than 0.1 m/s. Time loss was defined as the time lost due to traveling at speed below 

the maximum speed. The queue length was calculated by using the end of the last standing vehicle. 

There were two values for each performance index for the Multiscale method, in which the first one was 
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the value under 0 percent CAV penetration and the second one was the value under 100 percent CAV 

penetration. 

Table 17: Performance of the Multi-Scale Signal-Vehicle Coupled Control 

Method 

Performance indexes 

avg. waiting time 
(s) 

avg. time loss (s) 
avg. queue length 

(m) 
avg. fuel 
(mg/s) 

Actuated 19.06 44.78 9.04 0.144 

Multiscale 

value 17.79 - 10.51 40.12 - 33.23 8.80 - 7.00 0.140 - 0.110 

improvement 6.66% - 46.75% 10.41% - 25.79% 2.65% - 22.57% 2.78% - 23.61% 

The table shows that the Multiscale method outperforms the Actuated signal control on all evaluation 

indexes. The performance of the Multiscale method increases as the CAV penetration rate increases 

because higher CAV penetration rate provides more accurate traffic state information and more 

controllability. The lowest performance gain is 2.65 percent (for the average queue length under 0 CAV 

penetration), and the highest gain is 46.75 percent (for the average waiting time under full CAV 

penetration). 

In summary, the VTD platform provided a test platform for the signal control and vehicle control 

algorithms. Various indexes such as waiting time, time loss, queue length, and fuel consumption were 

generated and collected to help better evaluate the performance of the algorithm. Note that for this 

particular case study, we used the SUMO simulation only; other scales and layers (i.e., MATSIM and 

Unity) could bring more evaluation tools, control flexibilities, and design possibilities. 

Subsection 5.2: Investigation of Traffic Dynamics 

In this case study, we built a neural network to learn  the car-following model from the simulated data. 

Data were collected from the SUMO simulation results. In our SUMO simulation, we used the Krauss 

Car-following model [33], as written in equation (3). In the equation, 𝑣𝑓 and 𝑣𝑙 are the velocity of the 

following vehicle and the leading vehicle, respectively; 𝑔(𝑡) is the gap between the two consecutive 

vehicles at time 𝑡; 𝑎𝑚𝑎𝑥, 𝑏, and 𝑣max are the maximum acceleration, the deceleration, and the 

maximum velocity of the vehicle, respectively; 𝑣𝑠 and 𝑣𝑑 are the safe velocity and the desired velocity, 

respectively; 𝜖 is the random value for simulating human driving, it is in the uniform distribution; 𝑇 

refers to time interval. The following test focused on passenger vehicles, so 𝑎𝑚𝑎𝑥, 𝑏, and 𝑣max are fixed: 
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𝑎𝑚𝑎𝑥 = 2.6 𝑚/𝑠, 𝑏 = 4.5 𝑚/𝑠2, and 𝑣max = 55.55 𝑚/𝑠. We used 1 second as the time interval: 𝑇 = 1. 

Plugging in these parameters, equation (4) shows the final learning equation.   

𝑣𝑓(𝑡 + 𝑇) = max(0,  𝑣𝑑 − 𝜖𝑎𝑚𝑎𝑥) 

𝑣𝑑 = min(𝑣𝑓(𝑡) + 𝑎max𝑇,  𝑣𝑠,  𝑣max) 

𝑣𝑠 = 𝑣𝑙 +
𝑔(𝑡) − 𝑣𝑙(𝑡)𝑇

𝑣𝑓(𝑡) + 𝑣𝑙(𝑡)
2𝑏

+ 𝑇

 

(3) 

 

𝑣𝑓(𝑡 + 𝑇) = max(0,  𝑣𝑑 − 2.6𝜖) 

𝑣𝑑 = min(𝑣𝑓(𝑡) + 2.6,  𝑣𝑠, 55.55) 

𝑣𝑠 = 𝑣𝑙(𝑡) +
9.0[𝑔(𝑡) − 𝑣𝑙(𝑡)]

𝑣𝑓(𝑡) + 𝑣𝑙(𝑡) + 9.0
 

(4) 

We then collected data by vehicle pair. Vehicle pairs were collected if vehicles were consecutive in the 

same lane of the same road section. In the example shown in Figure 33, we highlight the vehicle in red 

as the follower, whereas green is the leader. Vehicles were considered to be a pair if the vehicle pair was 

driving as the case shown in Figure 33 (a): vehicles were driving consecutively in the same road section 

and the same lane so that none of the vehicles in black was the leader or follower. Vehicle pairs in black 

and grey in Figure 33 (b) were not considered a pair because they did not drive in the same road section, 

although they were consecutive vehicles. After collecting data, we removed the vehicle pairs with either 

the follower or the leader idle because zero speeds would not provide any information to the candidate 

function; instead, it would confuse the learning model. The processed vehicle pairs were input to the 

learning model, each pair a data point with information about the velocity of the leading vehicle, the 

velocity of the following vehicle, the gap between them, and the timestamp. The velocities between the 

leading and following vehicles (see Figure 34) were greater than zero, 0.0001 at minimum, and the 

maximum leading velocity was slightly greater than the following velocity. 

We attempted to build a neural network that would be able to learn meaningful features of car-

following dynamics. The neural network structure was designed to be compared to equation (4). 

Equation (4) has three steps to calculate the predicted velocity: (i) safe velocity calculation, (ii) desired 

velocity calculation, and (iii) predicted velocity calculation. The first step uses 𝑣𝑙(𝑡),  𝑔(𝑡), 𝑣𝑓(𝑡), 𝑏 = 4.5 

to calculate 𝑣𝑠, the second step uses 𝑣𝑠 and 𝑎max = 2.6 to calculate the desired velocity, and then the 
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final step utilizes 𝑣𝑑 and 𝑎max = 2.6 to predict the velocity at the next time frame. On the basis of these 

three steps, the neural network was designed to have an input layer, an output layer, and three hidden 

layers in between, as shown in Figure 35. The input layer received the six variables: 𝑣𝑙(𝑡),  𝑔(𝑡), 𝑣𝑓(𝑡), 

𝑏 = 4.5 and 𝑎max = 2.6; the output layer was the predicted velocity of the follower; in between, the 

first hidden layer was designed to initially process the input information while the other two layers were 

designed for calculating the safe velocity and desired velocity, respectively. Each hidden layer used the 

sigmoid activation function. 

 

Figure 33: Data Collection by Vehicle Pairs 

 

 

Figure 34: Velocities of Leaders and Followers 
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Figure 35: Neural Network Architecture 

The loss function we adopted was squared error loss, as written as equation (5). In the loss function, we 

compared the predicted velocity �̂�𝑖(𝑡 + 𝑇) and the actual velocity 𝑣𝑖(𝑡 + 𝑇) of vehicle 𝑖, then we added 

up all the squared differences between the two. After using 10-fold cross-validation, we decided to use 

the learning rate 10−5 and the parameter ℎ = 8 in the neural network. The training result can be seen 

in Figure 36. The final validation loss and the test loss were 2.403 and 4.240, respectively.  

However, features provided by the last two hidden layers did not have physical meanings. Feeding a set 

of information of another simulated vehicle pair to the neural network, we obtained many negative 

outcomes from the last two layers. Table 18 documents the outcomes from the second hidden layer. 

The result reflects that a neural network is powerful at fitting data; however, interpreting the black box 

is difficult. It also implies that the model yielded by a neural network could be a more difficult puzzle if 

we added more layers and neurons aiming to increase prediction accuracy. In fact, learning physical 

dynamics from data is a data-driven discovery question, which has been tackled for decades mostly by 

statistical models on understanding statistical relationships [34, 35]. However, statistical relationships 

between the input and the response are usually given by humans, meaning that training a statistical 

model can be limited by human knowledge. In other words, discovering the underlying structure of a 

dynamical system directly from data remains underexplored. The problem of discovering insights from 

data is worth further study. 

min
𝑤

∑(𝑣𝑖(𝑡 + 𝑇) − �̂�𝑖(𝑡 + 𝑇))
2

𝑖=1

 (5) 
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Figure 36: Training and Validation Results 

 

Table 18: Outcomes of the Second Hidden Layer vs. Given Variables 

The second hidden layer 

10.680 

-22.1601 

-197.6575 

-119.4152 

35.4486 
 

Input Variables 

𝑣𝑠 12.533 

𝑔(𝑡) 2.5 

𝑎max 2.6 

𝑏 4.5 

𝑣𝑙(𝑡) 12.533 
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Section 6: Discussion and Conclusion 

The goal of this project was to establish a transportation simulation platform that can model connected 

and automated transportation systems at multiple scales. For this research, we proposed a framework 

for integrating traffic models that can simulate transportation systems at different scales. We used 

open-source transportation simulators, i.e., MATSim and SUMO, as the main simulation models. We also 

chose Unity to manage sub-microscopic visualization because Unity gives developers great freedom to 

create any gaming environment. This project developed a way to not only include the three model 

components in a platform but also established a communication system for them to interact with each 

other. Meanwhile, we chose the Greater Seattle area as the study region for implementing the 

developed VTD platform. The network datasets were calibrated to the observed traffic data. In 

summary, this project had three key parts: (i) development and implementation of the VTD multiscale 

simulation platform, (ii) calibration of the SUMO network, and (iii) calibration of the MATSim network.  

The SUMO network was calibrated by following the system performance simulation calibration criteria 

provided by FHWA [36]. The SUMO simulation was built by using PSRC OD data for vehicle and 

pedestrian demands, and GTFS data for public transit. To conduct the simulation, this project used loop 

data from WSDOT and travel time data from NPMRDS for field measurements. Our calibration results 

showed that 80 percent of the traffic volumes and 50 percent of the travel times were well calibrated. 

The calibration process had several limitations. First, travel time calibration should be enhanced; one of 

the main issues for travel time calibration is a lack of auxiliary data resources. With only OD demand in 

hand, it was hard to speculate the traffic state for each road segment accurately. For future study, a 

project should attempt to find data for traffic volume calibration along the local street. Second, the data 

resource for the input OD data (2014) and the filed measurement data (2018) were from different years. 

Such variance may also play a role in calibration performance. Third, more calibration for SUMO should 

be conducted, such as route calibration and car-following model calibration suggested by the FHWA. 

The project team will continue to explore and gather more data for further calibrations.  

The MATSim network was calibrated to well represent traffic in the real world. The Greater Seattle 

network combined network data from the City of Seattle and network data from the City of Bellevue, 

both published in 2020. The calibration of the MATSim network considered home-based work traffic 

demand extracted from PSRC OD data. During the project working period, the latest demand 

estimations by the PSRC were based on a 2014 survey. To be consistent with the demand data, we 

collected 2014 bus route data from the GTFS. To simulate demand in which either the trip origin or 

destination was outside of our study area, we deployed TAZ gates around the simulated region. The TAZ 

gates were selected from PSRC TAZ data. The latest TAZ dataset that we could access during our project 

working period was from 2010. On the basis of these, traffic links were calibrated to real traffic data by 

using average observed traffic volumes and speeds. Because of the SR 99 tunnel project [37], we 
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collected traffic volume data from SDOT and traffic speed data from INRIX recorded in May 2018. We 

mainly calibrated link speed limits and link capacities for the MATSim network. The network links were 

categorized into highway and arterial types. These two types of links were calibrated individually for link 

speed limits. The simulated speeds of both types of links were calibrated to be within a 10 percent 

difference from observed speeds. The capacity calibration focused only on arterial links. We chose 21 

checkpoints on major streets. The calibrated traffic volumes were 11.55 percent different, on average, 

from the observed volumes. However, the calibration processes can be improved for the following 

reasons. First, datasets collected in this project were generated or recorded in different years because of 

the survey year and the tunnel project discussed above. With the year difference between traffic data 

and network data, traffic might have behaved differently from the real world in the study area even 

though there was only a marginal gap at the checkpoints. Second, the network calibration was mainly 

for the Seattle part and can be expanded. Third, capacity calibration for highway links remained undone. 

The calibration would have been closer to perfect if it could have been extended to the Bellevue part 

and included all types of network links.  

The VTD platform was developed and implemented by a computer with 32 GB memory and an Intel 

Core i9-9900K CPU. The implementation of the VTD platform showed capabilities of traffic simulation at 

multiple scales. Regarding the design of the integration between the macroscopic simulation model (i.e., 

MATSim) and the microscopic simulation model (i.e., SUMO), the implementation showed that vehicles 

traveling between the MATSim and the SUMO areas can be simulated by this VTD platform. The 

communication between the microscopic simulation model (i.e., SUMO), and the vehicle 

simulation/visualization model (i.e., Unity 3D) was designed to be managed by the control center. The 

implementation also displayed that the vehicle simulation/visualization model can visualize the ego car 

and the surrounding environment. The implementation showed that the VTD platform has the potential 

to help simulate traffic behaviors in a study area at multiple scales. With the integration between the 

macroscopic simulation model and the microscopic simulation model, researchers can model traffic 

flows and, at the same time, vehicle interactions, e.g., lane-switching and car-following. Researchers can 

also observe vehicle interactions at the vehicle level by using the vehicle simulation/visualization model. 

This platform can also help test and improve traffic control algorithms. We tested a multi-scale, signal-

vehicle coupled control algorithm on this platform. The control flexibilities enabled us to design complex 

control algorithms and various indexes that can be collected and provided us with plentiful data to 

evaluate and improve the control algorithms. We also used the simulated trajectory data to learn  the 

car-following model. Passenger vehicles were the only vehicle type considered in this car-following 

model learning task. The learning used a neural network that had three hidden layers. The neural 

network gave us a decent model. The nonlinear model, however, did not provide physical insights 

between the input and output variables. This result leaves a valuable research topic for the project 

team.   
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Section 7: Future Research Directions 

Below we discuss potential future research directions for improving the calibration for the SUMO 

network, calibration for the MATSim network, the VTD platform development, and possible applications 

using the VTD platform. For the SUMO network, further calibration may consider different types of 

vehicles, such as freight. Apart from using the GEH for traffic volume and travel time calibration (system 

performance calibration), future calibration of SUMO can focus on more detailed features such as route 

calibration. As discussed in the previous chapter, the MATSim network calibration used traffic data from 

different years, and several of them had gaps of about six years from the network datasets. 

Furthermore, the calibration focused mainly on the City of Seattle. The network can be calibrated to the 

latest travel estimations on the basis of the updated survey data. Bellevue can also be included in the 

calibration process for the latest datasets. For the VTD platform development, we simplified the 

simulation features of the vehicle simulation/visualization model. This feature has the potential for 

future development. Specifically, the vehicle simulation/visualization model can further simulate CAVs 

equipped with onboard sensors, such as LiDAR. The CAVs in the vehicle simulation/visualization model 

can report the latest sensing data back to the control center. These data can then provide extra 

information for the control center for traffic control, including traffic signal control, vehicle control, or 

coupled signal-vehicle control. This feature may rely on techniques such as computer vision (CV) 

algorithms and simultaneous localization and mapping (SLAM).  

Speaking of applications, the VTD platform can help provide insights into traffic dynamics. The VTD 

platform may not only help to verify existing traffic dynamics models but also make it possible to 

discover new or simplified models for traffic dynamics. More specifically, the VTD platform has the 

potential to test and verify link-level traffic dynamic models. Researchers can use the traffic data 

simulated by the VTD platform to further validate existing link dynamic models, such as the point queue 

model, link transmission model, and double queue model. In this potential analysis, a link-level 

fundamental diagram could further provide the relationship between the network link properties (e.g., 

capacities and speed limit) and the characteristics of the fundamental diagram (e.g., shape and slope). It 

could also be possible to learn traffic dynamics from the VTD simulated data using data-driven machine 

learning techniques.  

For the multi-scale, signal-vehicle coupled control algorithm, the potential future research directions 

include the following: (i) testing the algorithm on a larger area and (ii) integrating Unity into the testing 

to simulate the vehicle dynamics more accurately and generate more detailed vehicle data. For the 

traffic dynamics learning task, the project team plans to continue to extract meaningful insights from 

the collected data. This research topic could be (i) developing a neural network that can capture physical 

relationships between the input and the targets, (ii) testing the neural network on multiple vehicle 

types, and (iii) testing on real data with more realistic vehicle dynamic models. 
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