
 New York University

Rutgers University

University of Washington

The University of Texas at El Paso

City College of New York
A USDOT University Transportation Center

A Multiscale Simulation Platform for

Connected and Automated

Transportation Systems

August 2022

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems ii

TECHNICAL REPORT STANDARD TITLE
PAGE

1. Report No. 2.Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

A Multiscale Simulation Platform for Connected and Automated Transportation Systems

5. Report Date

August 2022

6. Performing Organization Code

7. Author(s)

Jeff Ban, Ohay Angah, Yiran Zhang, Qiangqiang Guo

8. Performing Organization Report No.

9. Performing Organization Name and Address

Connected Cities for Smart Mobility towards Accessible and

Resilient Transportation Center (C2SMART), 6 Metrotech Center, 4th Floor,

NYU Tandon School of Engineering, Brooklyn, NY, 11201, United States

10. Work Unit No.

11. Contract or Grant No.

69A3551747119

12. Sponsoring Agency Name and Address

Office of the Assistant Secretary for Research and Technology

University Transportation Centers Program

U.S. Department of Transportation Washington, DC 20590

13. Type of Report and Period Covered
Final Report, 3/1/2021 - 5/31/2022

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Traffic simulation is an important tool that can assist researchers, analysts, and policymakers in testing vehicle/traffic control algorithms, gaining

insights into micro/macro traffic dynamics, and designing traffic management strategies. However, different implementations require different

simulation scales, and no multiscale simulation platform satisfies all requirements. In this project, we proposed to establish a multiscale vehicle-

traffic-demand (VTD) simulation platform for connected and automated transportation systems (CATS). This is particularly meant for the control and

management of CATS with varying penetration rates of connected and automated vehicles (CAVs). We built a microscopic vehicle-in-the-loop (VIL)

simulation platform, which used Unity 3D to simulate/visualize vehicle operations/dynamics and Simulation of Urban Mobil ity (SUMO) to simulate

traffic flow dynamics.

17. Key Words 18. Distribution Statement

Public Access

19. Security Classif (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No of Pages

69

22. Price

Form DOT F 1700.7 (8-69)

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems iii

A Multiscale Simulation Platform for Connected
and Automated Transportation Systems

Principal Investigator: Jeff Ban

University of Washington
0000-0003-3605-971X

Ohay Angah

University of Washington
0000-0002-8937-5022

Yiran Zhang
University of Washington

0000-0002-7392-8841

Qiangqiang Guo
University of Washington

0000-0002-6461-5886

C2SMART Center is a USDOT Tier 1 University Transportation Center taking on some of today’s
most pressing urban mobility challenges. Some of the areas C2SMART focuses on include:

Urban Mobility and
Connected Citizens

Urban Analytics for
Smart Cities

Resilient, Smart, &
Secure Infrastructure

Disruptive Technologies and their impacts on transportation systems.
Our aim is to develop innovative solutions to accelerate technology
transfer from the research phase to the real world.

Unconventional Big Data Applications from field tests and non-
traditional sensing technologies for decision-makers to address a wide
range of urban mobility problems with the best information available.

Impactful Engagement overcoming institutional barriers to innovation
to hear and meet the needs of city and state stakeholders, including
government agencies, policy makers, the private sector, non-profit
organizations, and entrepreneurs.

Forward-thinking Training and Development dedicated to training the
workforce of tomorrow to deal with new mobility problems in ways
that are not covered in existing transportation curricula.

Led by New York University’s Tandon School of Engineering, C2SMART
is a consortium of leading research universities, including
Rutgersersity, University of Washington, the University of Texas at El
Paso, and The City College of NY.

Visit c2smart.engineering.nyu.edu to learn more

http://c2smart.engineering.nyu.edu/

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems iv

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and the

accuracy of the information presented herein. This document is disseminated in the interest of

information exchange. The report is funded, partially or entirely, by a grant from the U.S. Department of

Transportation’s University Transportation Centers Program. However, the U.S. Government assumes no

liability for the contents or use thereof.

Acknowledgments

The project team would like to thank the C2SMART UTC for financial and administrative support.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 1

Executive Summary

Traffic simulation is an important tool that can assist researchers, analysts, and policymakers in testing

vehicle/traffic control algorithms, gaining insights into micro/macro traffic dynamics, and designing

traffic management strategies. However, different implementations require different simulation scales,

and no multiscale simulation platform satisfies all requirements. In this project, we proposed to

establish a multiscale vehicle-traffic-demand (VTD) simulation platform for connected and automated

transportation systems (CATS). This is particularly meant for the control and management of CATS with

varying penetration rates of connected and automated vehicles (CAVs). We built a microscopic vehicle-

in-the-loop (VIL) simulation platform, which used Unity 3D to simulate/visualize vehicle

operations/dynamics and Simulation of Urban Mobility (SUMO) to simulate traffic flow dynamics [1].

The development of the multiscale VTD leveraged the existing platform and extended the platform to

also simulate large-scale traffic flows. The VTD platform in this project added Multiagent Transport

Simulation (MATSim) to the VIL platform. This addition led to tasks on integrating traffic simulation

models at different simulating scales (i.e., MATSim, SUMO, and Unity); communicating among MATSim,

SUMO, Unity, and the Amazon Web Services (AWS) DeepRacer; smoothing all processes in the platform;

and efficiently building a larger traffic environment in Unity. In this VTD platform, MATSim was expected

to model traffic flows moving across traffic links and therefore was assigned a larger traffic region than

SUMO, followed by Unity. In this regard, MATSim was given a network with a larger range than that

given to SUMO. More specifically, we chose Greater Seattle to be MATSim’s study area, while

Downtown Seattle was the study area in SUMO. These two network systems were obtained from

different sources; we therefore calibrated them individually.

This report describes our proposed approach to these tasks. Sections in this report address (i) network

set-up and network calibrations for the two obtained networks; (ii) design of the multiscale simulation

platform VTD; (iii) development and implementation of the multiscale simulation platform VTD; and (iv)

discussion, conclusions, and possible directions for future work. In the first task, we collected the

network data sets, traffic speed data, and traffic volume data from the City of Seattle, the City of

Bellevue, INRIX, and the Puget Sound Regional Council (PSRC). The collected networks were then

calibrated based on observed speeds and volumes. The second task focused on the integration of

MATSim and SUMO, as well as communication among SUMO, Unity, and DeepRacer. This task was

further broken down into integration between SUMO and MATSim, and communication among SUMO,

Unity, and DeepRacer. The third task was to complete integration and communication based on the

design and to ensure that the MATSim-SUMO integration was compatible. We then implemented the

platform for the Greater Seattle area.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 2

After platform development and implementation, we also proposed several research tasks to utilize the

platform to better understand traffic dynamics and improve traffic performance. These included traffic

dynamics learning and traffic signal and vehicle control.

Table of Contents

Executive Summary .. 1
Section 1 Research Background ... 5
Section 2 The Framework for the VTD Platform ... 7

Subsection 2.1: MATSim-SUMO Integration .. 7
Subsection 2.2: SUMO-Unity Integration ... 13

Section 3: MATSim Calibration ... 21
Subsection 3.1: Network Set-up ... 21
Subsection 3.2: Network Calibration .. 26

Section 4: SUMO Calibration .. 35
Subsection 4.1: Network Set-up ... 35
Subsection 4.2: Network Calibration .. 47

Section 5: Testing Results ... 52
Subsection 5.1: Testing of a Multiscale Signal-Vehicle Coupled Control Algorithm 52
Subsection 5.2: Investigation of Traffic Dynamics.. 54

Section 6: Discussion and Conclusion ... 59
Section 7: Future Research Directions ... 61
References .. 62

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 3

List of Figures

Figure 1: Overview of the Vehicle in the Loop (VIL) Simulation ... 6

Figure 2: Overview of the VTD Simulation .. 7

Figure 3: Design of Trip Integration .. 9

Figure 4: Link Matching Approach .. 10

Figure 5: Development Pipeline of MATSim-SUMO Integration .. 12

Figure 6: Disconnected Network .. 13

Figure 7: Detailed Design of SUMO-Unity Integration ... 14

Figure 8: An Example: Target Area in Downtown Seattle .. 16

Figure 9: Environments in OSM, SUMO, and Unity .. 16

Figure 10: Diagram of the Used Processor in Unity .. 18

Figure 11: VTD Platform Environment .. 19

Figure 12: VTD Platform Implementation ... 20

Figure 13: VTD Platform Implementation (Cont’d) .. 20

Figure 14: Collected Network Datasets .. 22

Figure 15: Initial Network for the Greater Seattle Area .. 23

Figure 16: Major Roads in Greater Seattle ... 24

Figure 17: Picked Bus Routes .. 25

Figure 18: Approach of Mapping Bus Routes on a Network [11] ... 25

Figure 19: Finalized Network for the Greater Seattle Area .. 26

Figure 20: Calibration Process .. 27

Figure 21: TAZ Gates around the Study Area.. 29

Figure 22: INRIX Links and Volume Checkpoints .. 30

Figure 23: Link Capacity Errors with Calibration Runs .. 32

Figure 24: Speed Calibration Result .. 33

Figure 25: Capacity Calibration Result .. 34

Figure 26: Range Map of SUMO Simulation OpenStreetMap Contributors (Left), SUMO
Simulation (Right) ... 35

Figure 27: Diverse Intersections Display in SUMO Simulation ... 39

Figure 28 Signal Timing Settings in Synchro [28] .. 42

Figure 29: Traffic Signal Settings in SUMO [27] .. 43

Figure 30: Direction Identification .. 45

Figure 31: Ring Barrier Control Example in SUMO [29] .. 46

Figure 32: The Tested Downtown Seattle Area .. 53

Figure 33: Data Collection by Vehicle Pairs .. 56

Figure 34: Velocities of Leaders and Followers .. 56

Figure 35: Neural Network Architecture .. 57

Figure 36: Training and Validation Results ... 58

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 4

List of Tables

Table 1: Cases for Trip Division ... 8

Table 2: Road Types in the Combined Greater Seattle Network .. 22

Table 3: Scale Factors and Simulated Populations ... 28

Table 4 TAZ Gates ... 28

Table 5: Observed Speed during Each Time Period and Link Types (mph) 30

Table 6: Traffic Volume Checkpoints .. 31

Table 7: Speed Factors .. 33

Table 8: Capacity Factors .. 34

Table 9: Network Design in the SUMO Simulation ... 36

Table 10: Route Design in the SUMO Simulation ... 37

Table 11: TAZ and Bus Stop Design in SUMO Simulation ... 38

Table 12: Similar Feature Comparison between Synchro and SUMO .. 40

Table 13: Traffic Signal Feature Comparison .. 43

Table 14: Wisconsin DOT Freeway Model Calibration Criteria [30] ... 47

Table 15: Tune Features for SUMO Calibration .. 48

Table 16: SUMO Calibration Results ... 49

Table 17: Performance of the Multi-Scale Signal-Vehicle Coupled Control 54

Table 18: Outcomes of the Second Hidden Layer vs. Given Variables ... 58

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 5

Section 1 Research Background

Traffic simulation is becoming an increasingly important tool for assisting researchers, analysts, and

policymakers in testing vehicle/traffic control algorithms, gaining insights into micro/macro traffic

dynamics, and designing traffic management strategies. Specific traffic/transportation applications may

require a proper simulation at the scale of a corridor, a small network, a city/region network, etc.

Although any of the specific scales may lack perspective on the behaviors of the overall transportation

system, there are currently few multiscale simulation platforms that can satisfy the requirements of all

the scales. In this project, we proposed a framework for establishing a multiscale vehicle-traffic-demand

(VTD) simulation platform. This platform is general and can be particularly tailored for the control and

management of connected and automated transportation systems (CATS) with varying penetration rates

of connected and automated vehicles (CAVs).

There are currently multiple traffic simulation software tools for transportation-related studies. Here we

briefly discuss some of the latest and most widely used simulation platforms, including a popular

macroscopic simulation model called Multi-Agent Transport Simulation (MATSim) [2], an emerging

mesoscopic simulation model called DTALite [3], the popular microscopic simulation model called Vissim

[4], a novel microscopic simulation model called A/B Street [5], and another popular open-source

simulation model called Simulation of Urban MObility (SUMO) [6]. MATSim is an agent-based platform

for large-scale traffic simulation. It is able to simulate daily traffic for a large region, but it cannot

capture detailed, individual vehicle behaviors such as turning movements and accelerations. DTALite is

an open-source, mesoscopic, dynamic traffic assignment (DTA) simulation package that provides a

theoretically rigorous and computationally efficient traffic network modeling tool. However, users need

a background in DTA and traffic flow theory to use the model, and the network visualization of DTALite

is simple in comparison to that of Vissim, A/B Street, or SUMO. Vissim is a widely used, multimodal

simulator that allows users to define different vehicle types, although it is not open source. A/B Street is

an open-source, microscopic traffic simulation platform released last year. The platform has an

impressive user interface for traffic networks. Nevertheless, the underlying traffic models in A/B Street

may be limited. SUMO is an open-source software platform and has been widely used for transportation

studies recently. However, users need to define many of the detailed traffic behaviors and dynamics,

which requires deeper knowledge about traffic/transportation.

None of the above-discussed simulation platforms is multiscale. To explore ways to simulate traffic

networks on different scales, some researchers [6, 7] have attempted to build a hybrid model that

integrates different levels of detail. However, developing a new multiscale simulation platform from

scratch is time- and resource-intensive, and it is often hard to capture both the macroscopic and

microscopic features of traffic flow or demand patterns. Although other researchers have coupled

different traffic simulation tools representing different levels of detail for multiscale simulation, such as

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 6

mesoscopic vs. microscopic [8], making multiple platforms compatible and implementing a

communication system among multiple models have remained a challenging task. Additionally, a limited

number of studies have explored traffic networks from a single vehicular level to a network level.

The research team built a microscopic vehicle-in-the-loop (VIL) simulation platform in 2020 [1], which

uses Unity 3D to simulate/visualize vehicle operations/dynamics and SUMO to simulate traffic flow

dynamics. Figure 1 shows an overview of the VIL simulation model. The VIL model applies the TCP/IP

communication protocol to communicate and coordinate between vehicle simulation (Unity) and traffic

simulation (SUMO), which can also help transfer data and information between the two. The model has

been shown to be a useful virtual testbed for research, testing, and validation of vehicle control (e.g.,

eco-driving), traffic control, and coupled traffic-vehicle control [1]. The VTD simulation platform

implemented in this project expands the VIL platform, and is expected to enable the team and other

researchers to investigate and test/validate more integrated vehicle-traffic control models on larger

areas. The VTD will also be able to facilitate concerted management strategies that can be

simultaneously developed for and applied to a multiscale transportation system.

Figure 1: Overview of the Vehicle in the Loop (VIL) Simulation

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 7

 Section 2 The Framework for the VTD Platform

The vehicle-traffic-demand (VTD) platform integrates MATSim, SUMO, and Unity. The overall framework

is shown in Figure 2. The integration is divided into MATSim-SUMO and SUMO-Unity because of the

distinct simulation frameworks inherent in the three models. MATSim models the 24-hour trip activities

of all agents and demand at once. In contrast, SUMO models individual moving behaviors at each time

step; Unity projects the moving behaviors at each time step on the corresponding objects in its

environment. An individual agent’s behavior can therefore be obtained at each time step in SUMO and

Unity. The trip activities and demand in MATSim, on the other hand, can be yielded only after MATSim

completes all the activity modeling. Therefore, integrations of MATSim-SUMO and SUMO-Unity have

different designs, which are described as follows.

Figure 2: Overview of the VTD Simulation

Subsection 2.1: MATSim-SUMO Integration

The concept of MATSim-SUMO integration is to provide coarse information (e.g., demand) about the

larger region while presenting traffic details (e.g., individual movements) from the local areas that are

considered important. MATSim is designed to handle the former and SUMO the latter. At the MATSim-

SUMO boundaries, the trip of each agent and the traffic network representation should be consistent. In

this regard, we designed a trip integration process for trip consistency and a potential strategy for

network connection at boundaries.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 8

Subsection 2.1.1: Design of Trip Integration

Trip integration follows the concept discussed above in that we first gain a coarse view of traffic

dynamics (e.g., traffic flow, link departure/arrival) and then observe the traffic details in several key

local areas. In the design, MATSim provides the large-scale traffic dynamics because it is capable of

collecting the link departure and arrival locations and times of each agent. The departure/arrival

information allows us to extract when and where each agent entered and exited the local areas.

According to the extracted information, each trip is divided into multiple trip segments categorized by

traveling within the larger region or in the local areas. The trip segments assigned to the local areas then

act as the travel input for the microscopic simulation by SUMO. To guarantee consistency of the trip

scenarios in both simulation models, the departure times of the ongoing trips within the larger region

for those agents just exiting local areas are updated and then become the input to MATSim for the final

demand simulation.

The number of divided trips depends on the number of times an agent travels into the local areas. All

the cases of trip division can be found in Table 1, in which we define the larger and the local areas by the

respective abbreviations for MATSim (“M”) and SUMO (“S”). Cases (i) and (ii) consider trips only in S and

M, respectively. Other cases, in contrast, consider trips across both M and S. Suppose an agent travels

into S n times, then the agent’s trip in M will be divided into n trip segments if the origin and the

destination include both M and S, i.e., cases (iii) and (vi). If the origin and the destination are only in M,

i.e. case (iv), then the agent’s trip in M will be divided into n+1 trip segments. The divided trip segments

in M, i.e. case (v) will be n-1 if the agent’s origin and the destination are both in S.

Table 1: Cases for Trip Division

Cases Traveling Cases The Number of Trips in M The Number of Trips in S

1 S 0 1

2 M 1 0

3 M→S→M→…→S n n

4 M→S→M→…→M n+1 n

5 S→M→S→…→S n-1 n

6 S→M→S→…→M n n

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 9

In summary, the process discussed above requires two MATSim simulations and one SUMO simulation

in between. Since the two simulations are different, outputs from the two MATSim simulations may also

be different. Here we provide a simple example as follows. After running the first MATSim simulation,

the result shows an agent travels from M (at 8:10 am) through S (8:20 to 8:30 am) and finishes the

overall trip in M (at 8:40 am), i.e., case (iv) in Table 1 with n = 1. The overall trip will consequently be

divided into two trips in MATSim and one trip in SUMO, as illustrated in Figure 3, in the following order:

(i) trip #1 traveling in M (8:10 to 8:20 am), (ii) trip of traveling in S (8:20 to 8:30 am), and (iii) trip #2

traveling in M (8:30 to 8:40 am). These trips are later converted into agent plans as input for MATSim

and a route demand as input for SUMO. At the moment, MATSim estimates the arrival time given to the

route demand in SUMO is 8:30 am and the travel time in SUMO area is 10 min. The agent’s movement

will then be simulated in SUMO, and the travel time of the agent may be different from 10 min since

SUMO considers more detailed traffic dynamics and congestion patterns. Assume SUMO simulation

generates 12 min travel time for the agent, implying that the agent will finish the trip in SUMO and

return to MATSim at 8:32 am. That is, in the second MATSim simulation, trip #2 in MATSim will start at

8:32 am instead of 8:30 am as MATSim initially estimated. In this case, the first MATSim simulation is

just used to generate initial agent schedules to divide their trips if necessary. Results of the second

MATSim simulation are used for analysis.

Figure 3: Design of Trip Integration

Subsection 2.1.2: Design of the Integration of Network Representations

The difficulty of making the networks used in MATSim and SUMO compatible varies depending on the

complexity and sources of the networks. Indeed, the difficulty should be relatively low if one uses the

same network in both simulation models. The number of links that SUMO covers, in this case, will be

less than or equal to the number of links that MATSim covers. Because the network representations in

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 10

both simulation models are already compatible, integration of the network representations is no longer

required no matter how complex the network is. However, the step is necessary if the networks used for

the two simulation models are from different sources. One will have to compare the links of one

network to the other. The comparison can be time-consuming if the networks are complex and, in

particular, have many differences. In this case, matching the links at the boundaries of the two

simulation models, whose networks have been calibrated, is a potential strategy for making the two

networks compatible. The matching approach in our design is affected by the networks used in this

project (see Section 3: MATSim Calibration), in which a road is usually represented by a link in SUMO but

by a series of shorter links in MATSim. As illustrated in Figure 4, we split each of the boundary links in

SUMO into multiple segments and compute the distance between each link segment and the center of

the MATSim link. The least distance is then considered to be the distance between the SUMO link and

the MATSim link. After distances between the MATSim link and all the SUMO links have been computed,

e.g., the green and the yellow illustrated in this figure, we record the SUMO link that has the least

distance as the one matched to the MATSim link. Those matched link pairs are later summarized in a

matching list, which is used for simulating agents traveling from the SUMO to the MATSim areas and

vice versa. Nevertheless, this approach may successfully match only a limited proportion of the links at

the boundaries if the two networks are very different. In other words, manually matching the rest of the

links and ensuring the validity of the matched link pairs may still be required.

Figure 4: Link Matching Approach

Subsection 2.1.3: Development of the MATSim-SUMO Integration

The design of the MATSim-SUMO integration aims to achieve consistency in network representation and

consistency in trips between the two models. For consistency in network representation, despite the

potential strategy discussed in the previous subsection, one may encounter a series of issues related to

different traffic network resolution levels between MATSim and SUMO. Because MATSim simulation is

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 11

usually used to observe traffic flow movements whereas SUMO simulation is used to model interactions

of individual vehicles in detail, it is rational to only include major roads in MATSIM but also include roads

at lower hierarchies (e.g., collector roads and minor roads) in the SUMO network. Such resolution

differences can result in road disconnection betwen the SUMO areas and the MATSim area. Moreover,

the differences can also create issues such as distributing traffic volumes from the MATSim area to the

SUMO areas. Trip consistency requires ensuring consistency in the number of agents and

departure/arrival times between the trips in the two simulation models. The number of agents from the

MATSim area to the boundaries of each SUMO area should be equal to the number of agents traveling

in the SUMO area. The time every agent from the MATSim area arrives at the boundaries of a SUMO

area should be consistent with the agent’s departure time traveling within the SUMO area. Likewise, the

time every agent traveling within a SUMO area arrives at the boundary of the MATSim area should be

consistent with the agent’s departure time for traveling within the MATSim area. Given the above

factors, we proposed the development framework shown in Figure 5 for MATSim-SUMO integration.

To begin with, as displayed in Figure 5, a road network of the larger region, agents, and trips of all

agents are prepared for MATSim; the road networks of the local areas and the schedules of traffic

signals are the inputs for SUMO. As mentioned above, the network prepared for MATSim considers only

the top-hierarchy road system, i.e., Interstate freeways, state highways, major arterial roads, etc.; each

of the networks for SUMO additionally considers collector roads and minor roads. All the networks used

in the two models are already calibrated. According to the prepared networks, a matching list is then

generated through the process of link matching. Meanwhile, the initial MATSim simulation can be

launched, given the prepared network, agents, and their trip plans. After the simulation, each simulated

trip is divided into multiple trips, if the agent entered the SUMO areas, based on the retrieved link entry

times and the link matching list; see Subsection 2.1.1. The divided trips are subsequently sent to the

next processor to check whether each trip in SUMO is valid. The route validity check is necessary if the

SUMO network is disconnected at certain locations. An example can be found in Figure 6; the

Downtown Seattle network is extracted from a larger area in OpenStreetMap (OSM). Given an origin-

destination (OD) pair from node 1 to node 6, an agent could go through the path 1-2-3-4-5-6 in the

MATSim network. However, in the Downtown Seattle area (the SUMO network), the agent cannot find a

feasible path for the given OD pair since part of the MATSim path is not included in the SUMO network.

Links that have this issue are mainly at the boundary of the SUMO network, i.e., in the highlighted red

blocks on the left-hand side of the figure. In this case, before the SUMO simulation, the route validity

check examines whether the OD pair of a trip is connected in SUMO. Trips with valid OD pairs are

retained as the inputs for the SUMO simulation. The subsequent MATSim departure times are then

updated on the basis of the arrival times simulated by SUMO. The updated trips and the trips without

being split, i.e., those traveling only in the MATSim area, are combined as inputs into MATSim. Lastly,

overall demand is finalized by running the MATSim simulation again with the updated plans.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 12

Figure 5: Development Pipeline of MATSim-SUMO Integration

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 13

Figure 6: Disconnected Network

Subsection 2.2: SUMO-Unity Integration

As shown in Figure 1, the VIL simulation platform integrates a vehicle visualization model (Unity), a

microscopic traffic simulation model (SUMO), and hardware. Message transfer between SUMO, Unity,

and the hardware is managed by a control center, which also generates traffic control commands based

on data gathered from the two models and the hardware. The SUMO-Unity integration in our VTD

platform inherits the functionalities of the control center. Note that the hardware is not the main focus

of this project and thus is omitted hereafter in this report.

Subsection 2.2.1: Design of the SUMO-Unity Integration

As just discussed, the design of communication between SUMO and Unity in our platform has the same

design as that of the VIL platform [1]. The design is summarized in Figure 7. SUMO and Unity share their

real-time information. On the one hand, the messages that are transmitted from SUMO to Unity can be

categorized into static information and dynamic information. Static information is information

determined before the SUMO simulation has been run, including the number of traffic signals, locations

of traffic signals, and traffic network configuration. Dynamic information is updated during the

simulation and contains traffic signal phases, ego-vehicle state, states of surrounding connected

automated vehicles, states of surrounding human-driven vehicles, and states of other surrounding

travelers. On the other hand, Unity sends information to remind SUMO whether the current information

has been processed and whether it is up for processing the next time-step information.

The information transferred between SUMO and Unity is managed by the message transmission

processor in the control center. Once the overall system has been launched, SUMO first waits for Unity

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 14

to be initialized until Unity sends an idle message to SUMO. SUMO then sends the traffic states—

including traffic signal states, network information, and current states of the ego vehicle and its

surrounding vehicles—to Unity. After receiving information from SUMO, Unity continues sending the

message “cook” to SUMO when it is processing the visualization. Meanwhile, Unity simulates the ego

vehicle sensing (e.g., camera and LiDAR) and sends the current sensed results to the control center for

traffic control (e.g., signal control and vehicle-traffic control) at the incoming time step. Commands of

signal control are then sent to SUMO to update the signal phases. Commands of vehicle-traffic control

are also determined on the basis of the traffic states collected from SUMO. After traffic visualization and

simulation have been completed, Unity then sends a message to SUMO to declare it is ready to process

the updated traffic states. Next, SUMO updates the signal phases on the basis of the commands from

the control center and surrounding vehicles’ states from its simulation. The overall steps then iterate

until the end of the simulation.

Figure 7: Detailed Design of SUMO-Unity Integration

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 15

Subsection 2.2.2: Development of the SUMO-Unity Integration

Different from the development process proposed Ban et al. [1], the environment in Unity in the VTD

platform is predetermined. In the VIL platform [1], Unity changes its visualization environment as ego

vehicles move forward. When an ego vehicle meets a new road section, Unity adds a new road section

to the visualization environment. Meanwhile, Unity removes the most aged road section if the capacity

for accommodating road objects is full to avoid out-of-memory issues. However, this strategy has two

main drawbacks. First, the overall platform can run slowly while waiting for Unity to generate road

sections. Second, for a study area that has many special road connections and road types, it can be time-

consuming to design all the road modules and road connection types in advance. Therefore, we take a

different strategy in this research when generating a traffic environment in the VTD platform. This

strategy is to generate the environment before launching the platform.

The environment is generated by the following steps: (i) target a traffic area, (ii) divide the area into

multiple sub-areas if the area is too big, (iii) generate and compress each sub-area’s traffic environment,

and (iv) combine all the areas into a base map. The purpose of dividing an area into multiple parts and

generating a traffic environment one by one is to reduce memory usage while creating a traffic

environment in each area. Compressing the generated traffic environment makes sure that the

combined traffic environment will not consume too much memory. To generate a traffic environment,

we apply the two packages RoadArchitect and CityGen3D in Unity. RoadArchitect is a package for

creating road systems. It has a traffic signal system module and a road system module. The former

includes options for traffic light poles, streetlights, and/or traffic lights coordinating with a controller to

dynamically change traffic signal phases. The latter has road markings, right or left-turn markings, and

one- to three-lane types. Nevertheless, the road system options are still limited to the traffic

environment that has a complex road design, such as Downtown Seattle. This is where the CityGen3D

package comes in. CityGen3D is a city generator that creates terrains, road systems, and amenities. It

generates terrains and road systems directly from an OSM file, although it does not include traffic signal

modules. Based on their capabilities, we create traffic signals using RoadArchitect while creating the

basic terrains for vehicles and the road systems with CityGen3D. Figure 8 and Figure 9 show examples

of generating an environment for the northern region of Downtown Seattle. The region is divided into

four parts along Harrison Street and Westlake Avenue N. We generate each part of the environment in

Unity and combine all the parts, resulting in the traffic environment displayed in Figure 9 (c).

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 16

Figure 8: An Example: Target Area in Downtown Seattle

(a) OSM (b) Environment in SUMO (c) Environment in Unity

Figure 9: Environments in OSM, SUMO, and Unity

Because the Unity environment in the VTD platform is created before simulations have been run, we

propose an approach for Unity to process the received messages. As shown in Figure 10, after

initialization, Unity sends a message to claim that it is ready to take a new message. Then it begins to

receive messages. The message sent from SUMO has two information pieces: information about the

current signal phases and information about current vehicles. Unity extracts and processes the

information pieces one by one. To process signal phase information, Unity sorts each traffic signal in a

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 17

clockwise direction starting from from the north. According to the sorting outcome, Unity then assigns

each phase to the corresponding traffic light. To update vehicle states, the vehicle information piece is

further decomposed into existing vehicles, departed vehicles, and newly arrived vehicles. Unity deletes

vehicles that have departed the traffic system, generates new vehicle objects for those that have just

joined the traffic system and moves them to their corresponding locations, and in the meantime moves

existing vehicles to their updated locations. Note that vehicles are not just moved to their updated

locations but are steered toward the updated directions, and updated steering angles are also extracted

from the vehicle information. In the VTD platform, we retain the camera tracking feature that always

stays a certain distance away from the ego vehicle, i.e., a half vehicle-length away from the ego vehicle

with a half vehicle-height above ground at ten degrees downward.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 18

Figure 10: Diagram of the Used Processor in Unity

Figure 11 shows the implementation of the VTD platform environment. From left to right, it shows

environments of the macroscopic traffic simulation (MATSim), the microscopic traffic simulation

(SUMO), and the vehicle simulation and visualization (Unity). The Unity environment simulates a certain

part of the SUMO environment, while SUMO simulates the Downtown Seattle region, which is a part of

the MATSim environment. Following the implementation shown in Figure 11, Figure 12 shows five

vehicles driving from the north to the Downtown Seattle region (SUMO area). SUMO simulates their

movements in the Downtown Seattle area, as shown on the right-hand side. Two codes are presented in

the SUMO simulation window shown in Figure 12. The bottom code refers to each vehicle’s ID, while the

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 19

code (“1.00” or “0.00”) right above the vehicle’s ID indicates whether this vehicle is from the MATSim

environment. “1.00” indicates that the vehicle comes from the MATSim region, “0.00” otherwise. Since

vehicles tagged “0.00” are not from the MATSim region, we may treat them as background vehicles.

Figure 13 displays a case in which several vehicles move from the MATSim environment to the SUMO

environment, and then return to the MATSim environment again. We use an underscore and a number

to count how many times the vehicle goes through the SUMO region. In this case, both the highlighted

vehicles go through the SUMO region once.

Figure 11: VTD Platform Environment

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 20

Figure 12: VTD Platform Implementation

Figure 13: VTD Platform Implementation (Cont’d)

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 21

Section 3: MATSim Calibration

Subsection 3.1: Network Set-up

Our simulation area in MATSim contains Seattle and Bellevue, which are connected by State Route 520

(SR 520) and the Interstate 90 (I-90). We collected the network datasets, as shown in Figure 14, from the

Seattle Department of Transportation (SDOT) and the Bellevue Department of Transportation,

respectively. The two network datasets categorize road types in different ways, as listed in Table 2. We

simplified the road types from their definitions into five categories: motorway, primary arterial,

secondary arterial, tertiary arterial, and unclassified. The motorway contains the highway systems: the

Interstate freeway and the state route freeway (Seattle), and the highway and highway ramp (Bellevue).

The primary arterial contains the major road types of the two network systems: the principle arterial

(Seattle) and the major arterial (Bellevue). The secondary arterial contains the collector and the minor

arterial types in both network systems. The tertiary arterial included the country arterial in the Seattle

road system and the other arterial in the Bellevue road system. Lastly, the unclassified category had the

undesignated (Seattle) and the local (Bellevue). Other road types are out of interest in this report.

The road types of the two networks were rearranged on the basis of the corresponding road categories

discussed above. The networks were then connected by merging their SR 520 and the I-90 road links.

We named the combined network the “Greater Seattle road network.” The Greater Seattle road

network had 107,253 nodes and 223,800 one-way road edges, as shown in Figure 15. However, the

network appeared too detailed for a macroscopic simulation, which might lead to excessive

computation time for calibration and simulation. We therefore generated a new road network

containing only the top-hierarchy roads, i.e., the motorways and the primary arterials. Roads that were

not classified as the motorway or the primary arterial were mostly removed, but those connecting the

top-hierarchy roads were retained. This was done with a two-step procedure. First, after retaining only

the top-hierarchy roads, we located the broken roads by checking the network connectivity. The method

we utilized for connectivity check was the Breath-First Search Traversal [9] (see Algorithm 1). Second,

we manually connected the unreached top-hierarchy roads by putting back the lower-level road link.

The procedure needed to be repeated multiple times until the overall network was connected. The

Greater Seattle road network now have 34,631 road links, as shown in Figure 16.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 22

(a) Seattle (b) Bellevue

Figure 14: Collected Network Datasets

Table 2: Road Types in the Combined Greater Seattle Network

 Seattle Network Bellevue Network Combined Network

Freeway
Interstate freeway Highway

Motorway
State Route freeway Highway Ramp

Arterial

Principle arterial Major arterial Primary arterial

Collector arterial
Secondary arterial

Minor arterial

County arterial Other arterial Tertiary arterial

Others
Not designated Local Unclassified

- Pedestrian corridor -

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 23

Figure 15: Initial Network for the Greater Seattle Area

Algorithm 1: Breath-First Search

Input G graph, s any node in G

function BFS(G, s):

 Initialize Q be a queue and mark s as visited

 Q.enqueue(s)

 while Q is not empty:

 v = Q.dequeue()

 for all edges w in G.adjacentEdges(v):

 if w is not marked as visited:

 Q.enqueue(w)

 mark w as visited

Next, we added bus routes to the Greater Seattle road network. The added bus routes were the 25

percent most productive routes evaluated by King County Metro (KCM) in 2014 [10]. The evaluation

considered the measures of “rides per platform hour” and “passenger miles per platform mile in all time

periods served,” which are clearly described in the 2014 Service Guidelines Report [10]. The high-

productivity routes in the Greater Seattle area include Routes 316, 41, 49, 71, 72, 73, 76, 77, B Line, D

Line, E Line, 15EX, and 74EX. Extracting the route data from the General Transit Feed Specification

https://transitfeeds.com/p/king-county-metro/73?p=5

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 24

(GTFS) route dataset and the King County Metro (KCM) October schedule dataset of the same year, we

considered just the former eleven routes because the last two routes were not included in the October

schedule dataset, as displayed in Figure 17. More bus routes could be integrated into the MATSim

model if needed, with proper calibrations.

Although GTFS route data and bus schedules provide information that included directions, service

locations, service schedules, and corresponding route IDs, the route data could not be directly used by

the MATSim model, as they were neither in the road map format nor in the format of the MATSim

schedule. Each bus route with its schedules needed to be mapped onto the MATSim network and

MATSim schedules. Therefore, we followed the approach proposed by Poletti [11] to map the chosen

bus routes onto the Greater Seattle road network in MATSim.

Figure 16: Major Roads in Greater Seattle

https://transitfeeds.com/p/king-county-metro/73?p=5

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 25

Figure 17: Picked Bus Routes

The mapping approach has five steps [11]: (i) sorting bus stops by route schedules, (ii) looking for link

candidates that are closest to bus stops and recording the center of each link, (iii) generating a pseudo

graph based on the recorded centers (see Figure 18 (a)), (iv) given travel distances, locating a pseudo

path that has the least cost between each link pair (see Figure 18 (b)), and (v) creating a link sequence

from the pseudo paths and adding an artificial link if any two consecutive bus stop pair had no link

connection. After including the selected bus routes in the network, the final Greater Seattle network

had 36,295 road edges, as shown in Figure 19. We next calibrated the network given travel plans (see

Subsection 3.2: Network Calibration).

(a) Pseudo graph from the recorded centers

(b) Pseudo paths of each link pair

Figure 18: Approach of Mapping Bus Routes on a Network [11]

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 26

Figure 19: Finalized Network for the Greater Seattle Area

Subsection 3.2: Network Calibration

We collected the demand data from the 2018 travel data provided by SDOT, the full-day travel plan from

the Puget Sound Regional Council’s (PSRC) 2014 Activity-Based Travel Estimation, the October 2014 KCM

schedule and 2014 GTFS data for bus routes, and the PSRC 2010 Traffic Analysis Zone (TAZ) data that

contains the shapefiles describing the geometries of the TAZs. The MATSim calibration procedure is

summarized in Figure 20, which is similar to the approach proposed by He et al. [12]. In this procedure,

speeds and capacities were calibrated separately.

Subsection 3.2.1: Travel Plan Setup

We extracted home-based work trips that were self-driven or on buses for a typical day from the PSRC

2014 activity-based trip data. We further retrieved populations in the following cases: (i) both trip origin

and destination were in our study area, (ii) only the trip origin was in our study area, and (iii) only the

trip destination was in our study area. We treated trips in the former two cases as resident trips and

trips in the latter case as non-resident trips. The number of driving resident trips was about ten times

the number of driving non-resident trips; the number of bus-riding resident trips was about three times

the number of bus-riding non-resident trips. In previous studies [12, 13, 14, 15, 16], a macroscopic

simulation typically had used a scaled population sample instead of the total population because of the

cost of computation. Table 3 lists their simulated populations and scale factors.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 27

Figure 20: Calibration Process

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 28

Table 3: Scale Factors and Simulated Populations

City Scale factor Simulated population Source Year

Zurich 10% 181,693 [17] 2008

Zurich 10% 68,000 [19] 2011

Berlin 10% - [16] 2019

Paris 10% - [15] 2019

New York 4% ~350,000 [12] 2020

According to the 2020 Census Redistricting Data released by the U.S. Census Bureau on August 12, 2020,

Seattle had a population of 761,100. On the basis of the latest investigation by the City of Bellevue,

Bellevue had a population of 145,300 in 2019. In total, the population of the study area was 906,400.

We then used 8 percent as the scaled population factor and sampled a 72,512 population for calibration.

Note that in the MATSim simulation, we deployed several TAZ gates around the Greater Seattle area to

simulate those agents whose origins or destinations were located outside. The TAZ gates wee deployed

on the basis of the TAZ, as displayed in Figure 21. We selected 40 TAZs from the 2010 King County TAZ

data around the Greater Seattle area as the gates, as listed in Table 4 and shown in Figure 21.

Table 4 TAZ Gates

TAZ ID # TAZ ID # TAZ ID # TAZ ID # TAZ ID

1 1 9 17 17 832 25 856 33 1640

2 2 10 19 18 837 26 857 34 1641

3 3 11 824 19 838 27 858 35 1642

4 6 12 825 20 839 28 861 36 1643

5 9 13 826 21 840 29 1408 37 1644

6 10 14 827 22 841 30 1450 38 1645

7 13 15 829 23 854 31 1638 39 1646

8 15 16 831 24 855 32 1639 40 1647

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 29

Figure 21: TAZ Gates around the Study Area

Subsection 3.2.2: Network Calibration

As discussed above, speed limits and capacities of network links were calibrated via the procedure

shown in Figure 20. We split the INRIX data into speeds on arterials and speeds on highways. In the

INRIX data, speeds from May 8th to 17th (weekdays) were used as the calibration references to compute

speed factors for arterials and highways, respectively. The factors were then used for calibrating link

capacities. In the capacity calibration, OD demands were prepared by considering only home-based

work trips via the modes of driving or taking a bus. We extracted demands from the 2014 PSRC-

generated activity data. The demands were input for simulation. Next, the link volume outcomes from

the simulation were compared with the observed hourly weekday volumes in 2018 collected from

Sensys. If the average volume difference was within a certain range, the calibration was done;

otherwise, we used the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm [13, 14,

15] to update the link capacities. Note that for calibration, it is often preferable to collect observed data

(volume, travel time, OD) for the same period of time (e.g., May 8 to 17, 2018). This was not possible for

this large network because of limits in data availability. The major assumption here is that the OD

demands in the area did not change much from 2014 to 2018.

The INRIX links are shown in Figure 22. We extracted typical weekday hourly speed data in 2018 from

May 8th to May 17th and took the average to compute average hourly link speeds. The hourly speeds

were split into six time periods: 6:00 to 9:00 am, 9:00 am to 12:00 pm, 12:00 to 3:00 pm, 3:00 to 6:00

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 30

pm, 6:00 to 9:00 pm, and 9:00 pm to 6:00 am. Then we computed the speed factors during each time

period for arterial links and highway links, respectively. The observed speeds for the six time periods are

listed in Table 5. The network was then calibrated on the basis of the link speeds. The speed factors

were computed with equation (1), where 𝑣type,time
obs is the average observed speeds for a certain link

type in a certain time period, 𝑣type
sim refers to the simulation link speed for a certain link type in a certain

time period, and 𝑓type,time
𝑣 is the speed factor to calibrate the simulation speed to the observed speed.

𝑣type,time
obs = 𝑓type,time

𝑣 𝑣type
sim , type ∈ {arterial, highway} , time ∈ {1,2,3,4,5,6} (1)

Figure 22: INRIX Links and Volume Checkpoints

Table 5: Observed Speed during Each Time Period and Link Types (mph)

 6 - 9 a.m. 9 a.m. - 12 p.m. 12 - 3 p.m. 3 - 6 p.m. 6 - 9 p.m. 9 p.m. - 6 a.m.

Highway 43.32 52.81 51.68 41.12 59.00 58.88

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 31

 6 - 9 a.m. 9 a.m. - 12 p.m. 12 - 3 p.m. 3 - 6 p.m. 6 - 9 p.m. 9 p.m. - 6 a.m.

Arterials 26.28 28.82 28.57 22.78 29.62 34.62

We used the 2018 Sensys traffic volume data to calibrate link capacities. To compare the observed

traffic volumes with the simulated volumes, we first selected checkpoints that were intersected by

major streets in Downtown Seattle, as shown in Figure 22 and listed in Table 6. Then the traffic volume

data were processed into average observed hourly traffic volumes. These traffic volume data were

classified into six groups by the six time periods discussed above. We used equation (2) to compute

capacity factors. In this equation, 𝑐type,time
obs is the average observed volume for a certain link type in a

certain time period, 𝑐type
sim is the simulation link volume for a certain link type in a certain time period,

and 𝑓type,time
𝑐 is the capacity factor to calibrate the simulation speed to the observed speed.

𝑐type,time
obs = 𝑓type,time

𝑐 𝑐type
sim , type ∈ {arterial, highway} , time ∈ {1,2,3,4,5,6} (2)

Table 6: Traffic Volume Checkpoints

ID Checkpoint ID Checkpoint ID Checkpoint ID Checkpoint

1 Ballard Bridge 7
1st & Edgar

Martinez
13

Western Ave &
Elliott Ave

19 Aurora & Harrison

2
Boren Ave &
Madison St

8 4th & Madison 14
4th Ave S &
Holgate St

20
1st Ave S & S
Spokane St

3
Boren Ave &

James St
9

Aurora Ave &
Howe St

15
Westlake Ave N &

Mercer St
21 Aurora Bridge

4
2nd Ave &

Blanchard St
10

Dexter Ave N &
Mercer St

16
Fairview Ave N &

Mercer St

5
4th Ave &
Lenora St

11
1st Ave S & Holgate

St
17

1st Ave S & S
Stacy St

6
Alaskan &
Madison

12 Spokane St Viaduct 18 Fremont Bridge

Then we adjusted the capacity factors several times until the average calibrated volume was close

enough to the average observed traffic volume. The adjustment used the SPSA algorithm, as shown in

Algorithm 2. In this algorithm, we defined capacity factors as theta_initial. Given the SPSA coefficients

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 32

beta = 0.602, gamma = 0.101, A = 3500, the gain sequence of step size a = 0.16, and the decreasing

sequence of positive number c = 0.05, we did the following: (i) computed the Bernoulli variables delta,

(ii) updated a and c, (iii) approximated the gradient at the current capacity factor, (iv) checked whether

the capacity factor converged, and (v) quit if it converged; otherwise, went to step (i). We ran this

algorithm multiple times until the difference between the average calibrated capacity and the average

observed was below 12 percent (see Figure 23).

Figure 23: Link Capacity Errors with Calibration Runs

The computed speed factors and capacity factors are listed in Table 7 and Table 8, respectively. The

results of calibration for link speed limits and capacities are shown in Figure 24 and Figure 25,

respectively. The average difference between the calibrated highway speeds and the observed speeds

Algorithm 2: SPSA Algorithm [13, 14, 15]

Input initial link capacities as a list theta_initial

Input constant beta, gamma, a, A, c, THRESHOLD, MAXITER

Initialize iter = 0; diff = inf

Initialize theta(0) = theta_initial

Initialize delta = in p-dimension filled with zeros

function SPSA(beta, gamma, a, A, c, f_initial):

 while diff > THRESHOLD and iter <= MAXITER:

 delta(j):= generated by Monte Carlo,

 each element is independently from Bernoulli distribution

 with probability 0.5

 a(iter) := a / (iter + A)^beta

 c(iter) := c /(iter)^gamma

 g(iter) := gradient(y(theta(iter) + c(iter) * delta),

 y(theta(iter) - c(iter) * delta), c(iter))

 theta(iter + 1) = theta(iter) – a(iter) * g(iter)

 diff = abs(a(iter) * g(iter))

 j += 1

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 33

was 8.09 percent; the average difference between the calibrated arterial speeds and the observed

arterial speeds was 9.87 percent; and the average difference between the calibrated capacities and the

observed capacities was 11.55 percent.

Table 7: Speed Factors

 6 - 9 a.m. 9 a.m. - 12 p.m. 12 - 3 p.m. 3 - 6 p.m. 6 - 9 p.m. 9 p.m. - 6 a.m.

Highway 1.10 1.08 1.09 1.09 1.08 1.10

Arterials 1.16 1.24 1.16 1.20 1.21 1.21

(a) Speed Calibration

(b) Difference between the Simulated and the Calibrated

Figure 24: Speed Calibration Result

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 34

Table 8: Capacity Factors

 6 - 9 a.m. 9 a.m. - 12 p.m. 12 - 3 p.m. 3 - 6 p.m. 6 - 9 p.m. 9 p.m. - 6 a.m.

 0.96 1.43 0.73 0.69 1.06 0.51

(a) Capacity Calibration

(b) Difference between the Simulated and the Calibrated

Figure 25: Capacity Calibration Result

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 35

Section 4: SUMO Calibration

Subsection 4.1: Network Set-up

We constructed the SUMO network in the Downtown Seattle area on the basis of the OSM's digital road

network data. The network data were then converted to SUMO by using the netconvert function, a

command line application that imports digital road networks from various resources and generates road

networks for SUMO [20]. The range map and the SUMO simulation network are shown in Figure 26

(north to Mercer Street, south to South Atlantic St/Edgar Martine Dt St, west to Alaskan Way and east to

12th Ave). The built-in SUMO network consisted of three major inputs: (i) the network file (.net.xml), the

basic network file covering network information about edges, lanes, junctions and right-of-way (ROW),

and connections; (ii) the route file (.rou.xml), a routes description file covering vehicle routes, pedestrian

routes, and public transit routes (bus and link light rail); and (iii) the additional file (.add.xml), a further

description file covering the TAZs, bus stops, and traffic signals. In addition, the traffic mode included in

the SUMO simulation covered passenger vehicles, public buses, pedestrians, and Link light rail.

Figure 26: Range Map of SUMO Simulation OpenStreetMap Contributors (Left), SUMO

Simulation (Right)

Subsection 4.1.1 Network File Set-up

The SUMO network file “describes the traffic-related part of a map, the roads and intersections the

simulated vehicles and pedestrians run along or across” [21]. Network file cleaning and editing, given

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 36

the converted OSM network, were then conducted on the basis of specific physical characteristics,

including number of lanes, intersection connections, road widths, speed limits, restricted lanes,

crosswalks, and junction merges. Details of the features of the cleaned SUMO network are summarized

in Table 9.

Table 9: Network Design in the SUMO Simulation

Main features Detailed design
of simulated

elements in SUMO

Edges and

Lanes

Edge is the connection between two nodes, each edge

consists of a certain number of lanes. The edge and lane

cover the road information includes:

• Road length

• Speed limit

• Road priority

24259 edges for

vehicles, (including

bus)

5343 edges for

pedestrians,

50 edges for link light

rail

Junctions and

ROW

Junction represents the area where different streams

(edges) cross, covering the ROW rules of vehicles crossing

the intersection.

7119 junctions

Connections

The connections describe the connection between each

lane, i.e., which outgoing lanes can be reached from an

incoming lane.

69283 connections

Subsection 4.1.2 Route File Set-up

The route file input in the SUMO simulation covered three types of routes: vehicle, pedestrian, and

public transit (bus and Link light rail). Both vehicle and pedestrian routes were generated on the basis of

the OD demand estimated by SoundCast, a travel demand model system built for the Puget Sound

Region [22]. The starting location of a vehicle or pedestrian was generated randomly based on the

SUMO default settings. To generate the route file, we used OD2TRIPS, a SUMO function that imports OD

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 37

matrices and converts them into single vehicle/pedestrian trips. The public transit routes were

constructed from GTFS data [23]. As a result, 62 public transit routes (including one route for Link light

rail) were included in the SUMO network. Details of the route design are listed in Table 10.

Table 10: Route Design in the SUMO Simulation

Type of routes Detailed Design

Vehicle

Routes are defined on the basis of the features below. The passing routes given

the O/D TAZ were generated automatically based on the shortest path.

• fromTAZ (origin)

• toTAZ (destination)

• from (starting edge in the origin TAZ)

• to (ending edge in the destination TAZ)

• depart (Depart time)

• departLane (the departure lane in the starting edge)

• departSpeed (the departure speed)

Pedestrian

Routes are defined on the basis of the features below. The passing routes given

the O/D TAZ were generated automatically based on the shortest path.

• from (starting pedestrian lane in the origin TAZ)

• to (ending pedestrian lane in the destination TAZ)

• depart (Depart time)

• arrivalPos (detailed position on the starting pedestrian lane)

• departPos (Departure position on the ending pedestrian lane)

Public Transit

Routes are defined on the basis of the features below.

• type (vehicle type)

• from (starting edge of the bus route)

• to (ending edge of the bus route)

• depart (departure time at the first bus stop)

• busStop (passed bus stops)

• until (for each bus stop, the departure time at the current bus stop)

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 38

Subsection 4.1.3 Additional File Set-up

The additional file input into the SUMO simulation consisted of three components: TAZs, bus stops, and

traffic signals. The TAZs and bus stops were defined in the same .add.xml file. A TAZ was geo-coded on

the basis of the traffic analysis zone defined by the PSRC. Meanwhile, bus stops and Link light rail

stations were geo-coded on the basis of GTFS data. Detailed settings for the TAZs and bus stops are

summarized in Table 11. Traffic signal information was provided by SDOT, which uses Synchro as the

design tool [24]. Therefore, we proposed a method to convert the traffic signal timing data from Synchro

for use in SUMO. The remaining subsections discuss the traffic signal conversion in detail.

Table 11: TAZ and Bus Stop Design in SUMO Simulation

Type of

additions
Detailed Design # of simulated elements in SUMO

TAZ

TAZs in SUMO is described by the lists of source

and destination edges, covering the edge and

node information.

180 TAZs, including 10 pseudo TAZs

for destination/origin outside the

Simulation range.

Bus Stop

The bus stop is defined by the features below,

• lane (the name of the lane the bus stop

located at)

• startPos (the begin position on the lane

in meters)

• endPos (the end position on the lane in

meters)

• friendlyPos (whether invalid stop

position should be corrected

automatically)

270 bus stops

For traffic signal set-ups, we converted the signal timing plans from Synchro for use in SUMO. Synchro is

based on the Highway Capacity Manual’s (HCM) 6th Edition for the design of signalized intersections,

unsignalized intersections, and roundabouts, which provides users more options for signal timing

designs [24]. On the other hand, SUMO is an open source, microscopic and continuous traffic simulation

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 39

package that was initially designed for large-scale networks. It allows modeling of intermodal traffic

systems covering road vehicles, public transport, and pedestrians.

Because of their distinctive characteristics, Synchro and SUMO have been used to explore transportation

problems from separate scales and perspectives. For instance, several studies [25, 26] have used

Synchro to test various traffic signal timing algorithms and have used SUMO to test the corresponding

impacts on vehicles. Most studies have focused on small areas, such as a single corridor with a limited

number of intersections, which can easily be built manually. Few studies have used both Synchro and

SUMO for a large road network. One of the leading reasons is that it can become a great challenge when

the study area is expanded to a large range for various simulation platforms. A large-scale network

simulation always brings more variation and complexity, given multiple types of signal timing plans,

intersections, and transportation modes. Figure 27, as an example, displays diverse intersections in our

SUMO simulation. Such variation increases the complexity of traffic signal conversion from Synchro to

SUMO.

Figure 27: Diverse Intersections Display in SUMO Simulation

To convert traffic signals from Synchro to SUMO, we first compared the input network features to better

understand the mechanisms behind the two simulation packages. The network data structure of

Synchro can be extracted from a single CSV file. Specializing in traffic signal optimization at a

macroscopic level, the network features of Synchro mainly focus on traffic signal settings. The network

data of Synchro consist of timing/signing, phasing, lanes, volumes, and detectors. SUMO, on the other

hand, is constructed on the basis of multiple xml files. Each file covers distinctive network features from

Synchro, including road networks, vehicle routes, and additional features such as advanced signal timing

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 40

plans. By checking the main network features and corresponding sub-features, we identified the

features that were transferrable between SUMO and Synchro, summarized in Table 12.

Table 12: Similar Feature Comparison between Synchro and SUMO

Settings
Synchro SUMO

Features Details Features Details

Road

Network

Links

Road setting, including road

name, direction (e.g., north

bound), road distance,

grade, number of lanes, etc.

Edge

From .net.xml file,

including road type

(allowed vehicle class),

priority, number of lanes,

etc.

Lanes

Sub feature of link, a link

with one direction can cover

multiple lanes. Including

speed limit, width, and

storage etc.

Lane

From .net.xml file, sub-

feature of edge, including

road distance (length),

coordinates and allowed

vehicle classes, etc.

Intersection Nodes

The position of each

intersection, including X, Y,

Z coordinates, intersection

type, etc.

Junction

From .net.xml file,

represents the area where

various streams cross,

covering the right-of-way

rules, X, Y coordinates, and

connected lanes, etc.

connection

From .net.xml file,

describes the connection

between two lanes (from

lanes and to lanes),

including the direction of

the connection (e.g.,

straight, left), the state

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 41

Settings
Synchro SUMO

Features Details Features Details

(e.g., major link), and

corresponding signals, etc.

Traffic

signal

Timeplans

The signal timing plans,

covering signal control

types, cycle length, offset,

etc.

tlLogic

From .net.xml/.add.xml

file, defines the phases of

traffic light, covering

control types, offset, and

phase index, etc.
Phases

The phasing data specifically

for ring barrier control,

including BRP (barrier, ring

and position), minimum and

maximum green time,

yellow time and red time,

etc.

Simulation Network

Basic simulation settings,

normally applied for the

entire simulation network,

including all red time,

vehicle length, and scenario

date and time, etc.

Configuration

Defines under .sumocfg

file, including the basic

config for sumo

simulation, including the

input and output .xml files,

simulation time, and

devices, etc.

On the basis of the compared features, we identified the feasibility and limitations of the simulation

conversion. First, both road network and signal timing plans under the two simulations had similar

features, while some of them were defined in separate ways. Nevertheless, a direct transfer based on

feature mapping was not viable, as the features were not matched one-to-one. For instance, for traffic

lights that control a single intersection, the traffic timing plans in Synchro use the road direction (e.g.,

northbound). However, SUMO [27] applies a clockwise pattern from 0 to 12 o’clock, with right turns

ordered before straight movements and left turns. Second, simulation conversion from a macroscopic

level to a microscopic level faces more challenges with missing features. As shown in Table 12, although

network structures in SUMO and Synchro are similar (regarding lanes, links, and intersections), some

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 42

sub-features such as road type are missing in Synchro. Such conversion challenges between different

simulation scales increase for a large traffic network. The larger the simulation area, the greater the

unmatched error and noise, making network checking and cleaning time-consuming. Moreover,

manually revising traffic signals between the two platforms for a large road network might even be

harder, given the various signal control types and various ways of defining signal timing. Therefore, it

was critical and necessary to explore a viable approach to efficiently converting traffic signal data

between the two simulation packages.

We first learned the traffic signal settings of both Synchro and SUMO. The traffic signal design for a

specific intersection in Synchro is displayed in Figure 28. In comparison to SUMO, traffic signal settings in

Synchro are more intuitive. Synchro designs timing settings for each direction (e.g., NBL, northbound

left), covering the minimum initial, minimum split, yellow, and all-red time. SUMO, on the other hand,

defines traffic signals following a clockwise order rather than traffic direction. Each feature within a

phase describes the state of one signal of the traffic light, and each link has the current state at each

phase. As shown in Figure 29, the traffic signal in SUMO is defined on the basis of a clockwise circle

starting in the northern direction. Each phase includes the traffic light states, minimum and maximum

duration, etc.

Figure 28 Signal Timing Settings in Synchro [28]

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 43

Figure 29: Traffic Signal Settings in SUMO [27]

A detailed traffic signal feature comparison between SUMO and Synchro is summarized in Table 13. It

shows that most of the features between the two simulations could be well matched. However,

variation occurred in some sub-features and default settings. For instance, Synchro applies ring barrier

control for traffic signal design, whereas SUMO uses fixed traffic timing plans as the default. Therefore,

traffic signal conversion required a bridge that would enables the feature information between the two

platforms to be transferrable. We proposed a four-step approach that could automatically translate

selected information between the two simulation platforms.

Table 13: Traffic Signal Feature Comparison

Item Synchro SUMO

Data source

• Timeplans

• Phases

• Lanes

• Links

• tlLogic

• Connection

• Edge

Direction

Direction for each phase is

specified as bound + direction

(NBL, NBT, NBR), bound

information varies, such as NW,

NE, NB

No defined bound information,

direction in SUMO means straight

(s), left (l), right(r), etc.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 44

Item Synchro SUMO

Phases

Designed based on the BRP

(barrier, ring and position) with

time on the horizontal axis and

each row describes the states for

one signal.

Each phase includes transition

(red/yellow) between green

phases.

Each phase describes all signal states

that last for a fixed duration with

time on the vertical axis.

Transition phase can be made up of

multiple intermediate phases.

Detector Detector is not specified
Detector information needs to be

specified

Pedestrian button Designed in Timeplans Needs to be programmed use TraCI

The four-step approach includes the following: (i) intersection mapping, (ii) signal direction bound

mapping, (iii) features extraction and mapping, and (iv) phase mapping. This method is under the

prerequisite that the network has been successfully built with correct and clean road features within

each simulation platform. Step (i) to step (iii) compose the intersection feature extraction and mapping,

while step (iv) specifically focuses on the traffic signal phase and timing conversion. Step (i) involves

mapping the intersection IDs between SUMO and Synchro. Each intersection from the two simulations

generates a unique ID, and the intersection mapping prevents the traffic signal conversion conducted at

the right (matched) intersections. Note that manual mapping is still needed when the intersection ID

between the two simulation platforms is not defined in the same way.

Step (ii) involves mapping the signal direction. As summarized in Table 13, traffic signal information in

SUMO does not cover the traffic direction; instead, signal status for each lane is defined in a clockwise

order, with the pedestrian phase defined after the vehicular phase. The 0 o’clock (starting direction) is

often located at due north (i.e., the southbound direction, SB, shown in Figure 30) under the condition

that the intersection is built as a positive cross. Given that intersections are constructed in different

shapes and with various angles in the actual road network, identifying the starting direction as well as

the traffic direction in SUMO became essential for successful and smooth signal direction mapping. To

achieve this, we used the shape information from the connected lanes of each intersection. More

specifically, the last two coordinates were selected from each incoming edge of the intersection to

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 45

calculate the traffic direction (Figure 30 (b)). As shown Figure 30 (a), after determining the traffic signal

timing order, we estimated vehicular direction. First, we categorized the direction into four types

(eastbound as EB, southbound as SB, westbound as WB, and northbound as NB). Then we identified the

most possible direction based on the slope and coordinate difference of the chosen coordinates. Given

that direction in Synchro is defined in multiple ways (e.g., not only NB, but also NE and NW), the final

direction was estimated on the basis of the order of Figure 30 (c)). With the traffic direction and

direction order, the direction was assigned on the basis of both the lane direction in SUMO (under the

Connection feature) and the traffic direction in Synchro, following the direction order from right turn

(R), through (T), and left turn (L). Having estimated the direction of vehicles, we then estimated

pedestrian direction. Unlike vehicular direction, pedestrians have no unique direction, as they are able

to cross an intersection from EB to WB and vice versa. On the other hand, the order of the pedestrian

direction begins with the crossing direction in SUMO of the first vehicular direction. Thus, the

corresponding crossing vehicular edges were identified to estimate the pedestrian direction.

 (b) Coordinate Selection

(a) Flow Chart of Direction Identification (c) Direction Order

Figure 30: Direction Identification

Step (iii) involves transfering and inspecting all the other features/sub-features from the two simulation

platforms for further conversion. Most of the features were selected under the phase feature of Synchro

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 46

and the tlLogic feature of SUMO, covering traffic signal control type (e.g., fixed timing, actuated timing),

offset, the appropriated BRP, minimum and maximum green time for each phase, yellow and all-red

times, and time settings for the pedestrian interval. Such feature information was then transferred to

the corresponding intersections. Nevertheless, not every intersection allowes a perfect mapping (with

all feature information well mapped from Synchro to SUMO), especially the directions, for instance,

missing the right/left turn at a specific direction. These variances need to be inspected and corrected to

guarantee a successful traffic signal simulation conversion.

With traffic signal feature information mapped, step (iv) involves assigning the signal phase order and

timing for each intersection. The format of signal phase settings varies in SUMO and Synchro. Synchro

has a built-in Ring-and-Barrier Designer to simulate the signal ring-barrier controller. Once the user

assigns the phase number to the BRP field, signal phase transition in Synchro is conducted automatically.

On the other hand, SUMO uses National Electrical Manufacturers Association (NEMA) type logic to

manage ring-barrier control signals [29]. The NEMA phase setting example is displayed in Figure 31. It

requires features including the phase number of each ring, barrier phase numbers, recall time for the

signals, and phase definitions. For phase definitions, it requires the minimum and maximum duration for

each green phase, timing for yellow and red phases, and vehicle extension timing in seconds.

<add>
 <tlLogic id="2881" offset="10" programID="NEMA" type="NEMA">
 <param key="detector-length" value="20"/>
 <param key="detector-length-leftTurnLane" value="10"/>
 <param key="total-cycle-length" value="120"/>
 <param key="ring1" value="1,2,0,4"/>
 <param key="ring2" value="0,6,0,4"/>
 <param key="barrierPhases" value="2,6"/>
 <param key="coordinate-mode" value="true"/>
 <param key="barrier2Phases" value="4,4"/>
 <param key="minRecall" value="2,6"/>
 <param key="maxRecall" value=""/>
 <param key="whetherOutputState" value="true"/>
 <param key="fixForceOff" value="false"/>

 <phase duration="99" minDur="6" maxDur="16" vehext="2" yellow="4" red="1" name="1"
state="srrrrrrGGrrr"/>
 <phase duration="99" minDur="10" maxDur="67" vehext="2" yellow="4" red="1" name="2"
state="srrrrrrrrGGG"/>
 <phase duration="99" minDur="10" maxDur="22" vehext="2" yellow="3.5" red="1.5"
name="4" state="GGGGGrrrrrrr"/>
 <phase duration="99" minDur="10" maxDur="88" vehext="2" yellow="4" red="1" name="6"
state="srrrrGGrrrrr"/>

 </tlLogic>

Figure 31: Ring Barrier Control Example in SUMO [29]

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 47

Subsection 4.2: Network Calibration

We calibrated the SUMO network to the observed traffic volumes and travel times.Three data resources

were applied for calibration, including the OD demands estimated by SoundCast as simulation input,

TRACFLOW data from WSDOT (highway traffic volumes), and NPMRDS (National Performance

Management Research Data Set) data (highway and local street travel time) as the field measurements.

The objective of the network calibration was to acquire the best match between model performance

estimates and field measurements. Parallel to this, the Wisconsin DOT freeway model calibration criteria

were applied as our calibration targets [30]. The calibration criteria are shown in Table 14.

Table 14: Wisconsin DOT Freeway Model Calibration Criteria [30]

Criteria and Measures Calibration Acceptance Targets

GEH Statistic < 5 for Individual Link Flows > 85% of cases

Travel Times, Model Versus Observed

Journey Times, Network: Within 15% (or 1 min,

if higher)

> 85% of cases

The GEH statistic was computed as follows:

𝐺𝐸𝐻 = √
(𝐸 − 𝑉)2

(𝐸 + 𝑉)2

where 𝐸 denotes the model estimated volume while 𝑉 denotes the field count.

We then conducted the SUMO network calibration through various perspectives, including network

features, car-following model parameters, and OD demand, as summarized in Table 15. The estimated

data from the SUMO simulation were collected by using the edge/lane-based traffic measures [31]. The

data collection covered the traffic volume and travel time information for each edge, including the

number of vehicles emitted onto the edge/lane within the settled time interval (departed), the number

of vehicles that finished their routes on the edge/lane (arrived), the number of vehicles that entered the

edge/lane from upstream (entered), the number of vehicles that left the edge/lane from downstream

(left), and times needed to pass the edge/lane (traveltime).

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 48

Table 15: Tune Features for SUMO Calibration

Category Focused features Description

Network structure

Speed validation

Speed limit check along each

edge, especially the local street

for better calibration

Lane configuration

Specifically for the lanes that

encounter unusual congestion

(compared with actual traffic),

including lane priority, edge

direction, route connectivity.

Signal & Stop sign configuration

Focused on the lane priority

(yield or zipper) of the merge

intersection/merge ramp.

Vehicles

Car following model parameter

The car-following model related

parameters for calibration

mainly include tau (the driver’s

desired time head way) and

sigma (the drive imperfection).

Basic attributes

Including acceleration and

deceleration ability check of

vehicles, and the minimum gap

when standing.

OD demand Trip arrival time

For each given OD pair, check

the estimated trip arrival time

based on the SoundCast

demand and revise the routes

for better calibration.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 49

Category Focused features Description

OD input

Specifically for the

origin/destination located on

the rim of the simulation

network since it connects with

the inbound/outbound

demand.

The calibration results are shown in Table 16. The SUMO calibration was conducted with 15 road

segments selected for the highway traffic volume calibration and 25 road segments chosen for the local

street travel time calibration. As Table 16 shows, 80 percent of the traffic volumes and 50 percent of the

travel times were well calibrated based on the calibration criteria in Table 14. The calibration

performance could be further improved, which however requires more time and computational

resources.

Table 16: SUMO Calibration Results

Index
Test Road

Segment ID*
Road
name

Peak hour
expected

Peak hour
simulated

GEH Calibrated
Test
Features

1 4722443
I-5 SB Exit
Stewart

770 698 7.06267 TRUE Volume

2 4755219#0
I-5 SB

Enter Yale
Ave

1110 1020 7.605634 TRUE Volume

3 96260970
I-5 SB Exit
Union St

1020 1413 126.961776 FALSE Volume

4 96260967
I-5 SB Exit

6th Ave
1470 1686 29.56654 TRUE Volume

8 35824613
I-5 SB CD

Enter
Spring

1070 1526 160.197227 FALSE Volume

6 4748988
I-5 SB CD

Exit
Dearborn

200 288 31.737705 TRUE Volume

7 4748998
I-5 SB CD
Exit 4th

Ave S
420 541 30.470343 FALSE Volume

8 4712866
I-5 NB CD

Enter
Spokane

410 381 2.126422 TRUE Volume

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 50

Index
Test Road

Segment ID*
Road
name

Peak hour
expected

Peak hour
simulated

GEH Calibrated
Test
Features

9 402084478
I-5 NB CD

After
Spokane

1070 1071 0.000934 TRUE Volume

10 4848517
I-5 NB CD

Enter
Dearborn

370 410 4.102564 TRUE Volume

11 105899959
I-5 NB CD
Exit James

1170 1012 22.88176 TRUE Volume

12 56178982
I-5 NB Exit

Seneca
960 1021 3.756689 TRUE Volume

13 171121268
I-5 NB

Enter Univ
St

530 516 0.374761 TRUE Volume

14 436165683#0
I-5 NB Exit
Olive Way

700 684 0.369942 TRUE Volume

15 621342731
I-5 NB

Enter Olive
Way

1150 1184 0.990574 TRUE Volume

16 114+08028
Madison

St
16.12 15.427 0.030447 TRUE

Travel
time

17 114+08088 Battery St 32.75 31.618889 0.039753 TRUE
Travel
time

18 114+08224 Marion St 38.21 60.567778 10.121107 FALSE
Travel
time

19 114+08225 Marion St 34.3 59.222222 13.282772 FALSE
Travel
time

20 114+08542 5th Ave 211.18 133.438 35.075467 FALSE
Travel
time

21 114+08571 6th Ave 35.45 34.57 0.022119 TRUE
Travel
time

22 114+10562 James St 39.61 33.262 1.105969 TRUE
Travel
time

23 114+10563 James St 125.31 197.37 32.184478 FALSE
Travel
time

24 114+11093 Pike St 83.4 63.135 5.60508 FALSE
Travel
time

25 114+11102 Pike St 90.08 26.535 69.252961 FALSE
Travel
time

26 114-08015
2nd Ave Ext

S
227.3 136.936 44.837152 FALSE

Travel
time

27 114-08018 2nd Ave 13.43 12.898 0.0215 TRUE
Travel
time

28 114-08093 Wall St 31.24 51.361667 9.803228 FALSE
Travel
time

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 51

Index
Test Road

Segment ID*
Road
name

Peak hour
expected

Peak hour
simulated

GEH Calibrated
Test
Features

29 114-08208
Madison

St
45.03 55.7425 2.277559 TRUE

Travel
time

30 114-08209
Madison

St
26.78 44.023 8.398544 FALSE

Travel
time

31 114-10098
Columbia

St
6.43 9.865 1.448202 TRUE

Travel
time

32 114-10501
S Jackson

St
69.89 51.298889 5.703979 FALSE

Travel
time

33 114-10502
S Jackson

St
27.26 5.653333 28.368324 FALSE

Travel
time

34 114-10560 James St 39.09 59.9275 8.770195 FALSE
Travel
time

35 114-10561 James St 51.21 45.498889 0.674536 TRUE
Travel
time

36 114-10562 James St 118.61 173.628 20.715857 FALSE
Travel
time

37 114-11101 Pine St 87.85 95.1875 0.588283 TRUE
Travel
time

38 114-11376 Stewart St 40.46 81.0775 27.148515 FALSE
Travel
time

39 114-11557 Pine St 73 63.106 1.438456 TRUE
Travel
time

40 114-15723 Pine St 62.76 63.64375 0.012357 TRUE
Travel
time

41 114N10562 James St 13.6 22.385 4.289355 TRUE
Travel
time

* for traffic volume, the road segment ID is the sumo edge id, for travel time is the NPMRDS road segment ID

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 52

Section 5: Testing Results

We show in this section some testing results using the developed multi-scale simulation platform,

including multiscale traffic-vehicle control algorithms and learning traffic dynamics.

Subsection 5.1: Testing of a Multiscale Signal-Vehicle Coupled Control Algorithm

We built a multi-scale, signal-vehicle coupled control framework to improve network-wide urban traffic

performance and used the VTD platform to test the proposed algorithm. The urban transportation

system is multi-modal and multi-scale both spatially and temporally. For example, when signal control is

at a macroscopic spatial scale (i.e., intersection scale) and a slower temporal scale (i.e., signals should be

adjusted at least in seconds to avoid confusion), vehicle control is at a microscopic spatial scale and a

faster temporal scale (i.e., vehicles should be controlled with a high frequency to guarantee safety). In

this test case, we built a slower-scale signal control model to generate optimal signal phases based on a

mixed integer, nonlinear programming formulation, and a faster-scale vehicle control model to generate

longitudinal vehicle accelerations based on a nonlinear programming formulation [32]. The goal of signal

control is to maximize total vehicle throughput, and the goal of vehicle control is to minimize fuel

consumption while maintaining acceptable travel time. In addition, the slower-scale signal control

algorithm will generate reference trajectories for all surrounding vehicles at slower-scale time points

(i.e., waypoints with larger time steps), and the faster-scale vehicle control algorithm will allow vehicles

to achieve the same trajectories but with a much smaller faster-scale time step.

The multi-scale signal-vehicle coupled control algorithm was first developed for a single intersection and

fully connected and autonomous vehicle (CAV) penetration (so that we could control all the vehicles).

Then, we extended it to multiple intersections and mixed traffic flow of both CAVs and human-driven

vehicles (HDVs, which we cannot control). For the multiple intersections scenario, we used the

information sharing technique to enable communications between neighboring intersections and then

developed a revised, distributed multi-scale, signal-vehicle coupled control algorithm. Specifically, for a

specific intersection, we collected the predicted vehicle trajectories generated by neighboring

intersections and calculated the arrival times of those vehicles. Then we integrated those upcoming

vehicles with the vehicles that were currently and physically on the surrounding roads to formulate a

new, slower-scale problem. In this way, the current intersection algorithm could generate optimal signal

phases by knowing the incoming vehicles. For the mixed traffic flow scenario, we designed a linear

interpolation method to estimate the HDVs’ states, based on which we formulated the slower-scale

problem in the same way as above. Then we developed a safety check mechanism to adjust the

commands generated by the faster-scale problem. Finally, we combined the two techniques, i.e.,

information sharing and the safety check, into an integrated, multi-scale, signal-vehicle coupled control

framework that can be used for real-world traffic networks. We omit the technical details here for the

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 53

sake of brevity (also because this was not the focus of this project). Below wee illustrate the testing of

the proposed framework using the VTD platform developed in this study.

As shown in Figure 32, we used a four-by-six-block downtown network in Seattle to test the multi-scale

signal-vehicle coupled control algorithm. There are different road types (e.g., one-way and two-way

roads) in this network, leading to six distinct types of intersection geometries. In Figure 32, the numbers

in the circles in the SUMO networks represent the types of intersections. We extracted the OD volume

data from the bigger Seattle-wide SUMO simulation network (as discussed in the previous chapter). The

number of OD pairs is large, and we omit the detailed OD volumes here for the sake of brevity. To have

an intuitive understanding, the maximum volume is 332 veh/hour from the upper right, north incoming

road to the bottom right, south outgoing road.

Figure 32: The Tested Downtown Seattle Area

We compared the proposed multi-scale signal-vehicle coupled control algorithm (denoted as Multiscale)

with the actuated signal control (denoted as Actuated). Table 16 shows the performance of these two

control methods. Note that for the Actuated method, the vehicles were controlled by SUMO’s default

car-following models. We used the average waiting time, time loss, queue length, and fuel consumption

as the evaluation indexes. The waiting time (in seconds) was defined as the number of seconds a vehicle

had a speed of less than 0.1 m/s. Time loss was defined as the time lost due to traveling at speed below

the maximum speed. The queue length was calculated by using the end of the last standing vehicle.

There were two values for each performance index for the Multiscale method, in which the first one was

Google map SUMO

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

2

2

2

1

1

1

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 54

the value under 0 percent CAV penetration and the second one was the value under 100 percent CAV

penetration.

Table 17: Performance of the Multi-Scale Signal-Vehicle Coupled Control

Method

Performance indexes

avg. waiting time
(s)

avg. time loss (s)
avg. queue length

(m)
avg. fuel
(mg/s)

Actuated 19.06 44.78 9.04 0.144

Multiscale

value 17.79 - 10.51 40.12 - 33.23 8.80 - 7.00 0.140 - 0.110

improvement 6.66% - 46.75% 10.41% - 25.79% 2.65% - 22.57% 2.78% - 23.61%

The table shows that the Multiscale method outperforms the Actuated signal control on all evaluation

indexes. The performance of the Multiscale method increases as the CAV penetration rate increases

because higher CAV penetration rate provides more accurate traffic state information and more

controllability. The lowest performance gain is 2.65 percent (for the average queue length under 0 CAV

penetration), and the highest gain is 46.75 percent (for the average waiting time under full CAV

penetration).

In summary, the VTD platform provided a test platform for the signal control and vehicle control

algorithms. Various indexes such as waiting time, time loss, queue length, and fuel consumption were

generated and collected to help better evaluate the performance of the algorithm. Note that for this

particular case study, we used the SUMO simulation only; other scales and layers (i.e., MATSIM and

Unity) could bring more evaluation tools, control flexibilities, and design possibilities.

Subsection 5.2: Investigation of Traffic Dynamics

In this case study, we built a neural network to learn the car-following model from the simulated data.

Data were collected from the SUMO simulation results. In our SUMO simulation, we used the Krauss

Car-following model [33], as written in equation (3). In the equation, 𝑣𝑓 and 𝑣𝑙 are the velocity of the

following vehicle and the leading vehicle, respectively; 𝑔(𝑡) is the gap between the two consecutive

vehicles at time 𝑡; 𝑎𝑚𝑎𝑥, 𝑏, and 𝑣max are the maximum acceleration, the deceleration, and the

maximum velocity of the vehicle, respectively; 𝑣𝑠 and 𝑣𝑑 are the safe velocity and the desired velocity,

respectively; 𝜖 is the random value for simulating human driving, it is in the uniform distribution; 𝑇

refers to time interval. The following test focused on passenger vehicles, so 𝑎𝑚𝑎𝑥, 𝑏, and 𝑣max are fixed:

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 55

𝑎𝑚𝑎𝑥 = 2.6 𝑚/𝑠, 𝑏 = 4.5 𝑚/𝑠2, and 𝑣max = 55.55 𝑚/𝑠. We used 1 second as the time interval: 𝑇 = 1.

Plugging in these parameters, equation (4) shows the final learning equation.

𝑣𝑓(𝑡 + 𝑇) = max(0, 𝑣𝑑 − 𝜖𝑎𝑚𝑎𝑥)

𝑣𝑑 = min(𝑣𝑓(𝑡) + 𝑎max𝑇, 𝑣𝑠, 𝑣max)

𝑣𝑠 = 𝑣𝑙 +
𝑔(𝑡) − 𝑣𝑙(𝑡)𝑇

𝑣𝑓(𝑡) + 𝑣𝑙(𝑡)
2𝑏

+ 𝑇

(3)

𝑣𝑓(𝑡 + 𝑇) = max(0, 𝑣𝑑 − 2.6𝜖)

𝑣𝑑 = min(𝑣𝑓(𝑡) + 2.6, 𝑣𝑠, 55.55)

𝑣𝑠 = 𝑣𝑙(𝑡) +
9.0[𝑔(𝑡) − 𝑣𝑙(𝑡)]

𝑣𝑓(𝑡) + 𝑣𝑙(𝑡) + 9.0

(4)

We then collected data by vehicle pair. Vehicle pairs were collected if vehicles were consecutive in the

same lane of the same road section. In the example shown in Figure 33, we highlight the vehicle in red

as the follower, whereas green is the leader. Vehicles were considered to be a pair if the vehicle pair was

driving as the case shown in Figure 33 (a): vehicles were driving consecutively in the same road section

and the same lane so that none of the vehicles in black was the leader or follower. Vehicle pairs in black

and grey in Figure 33 (b) were not considered a pair because they did not drive in the same road section,

although they were consecutive vehicles. After collecting data, we removed the vehicle pairs with either

the follower or the leader idle because zero speeds would not provide any information to the candidate

function; instead, it would confuse the learning model. The processed vehicle pairs were input to the

learning model, each pair a data point with information about the velocity of the leading vehicle, the

velocity of the following vehicle, the gap between them, and the timestamp. The velocities between the

leading and following vehicles (see Figure 34) were greater than zero, 0.0001 at minimum, and the

maximum leading velocity was slightly greater than the following velocity.

We attempted to build a neural network that would be able to learn meaningful features of car-

following dynamics. The neural network structure was designed to be compared to equation (4).

Equation (4) has three steps to calculate the predicted velocity: (i) safe velocity calculation, (ii) desired

velocity calculation, and (iii) predicted velocity calculation. The first step uses 𝑣𝑙(𝑡), 𝑔(𝑡), 𝑣𝑓(𝑡), 𝑏 = 4.5

to calculate 𝑣𝑠, the second step uses 𝑣𝑠 and 𝑎max = 2.6 to calculate the desired velocity, and then the

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 56

final step utilizes 𝑣𝑑 and 𝑎max = 2.6 to predict the velocity at the next time frame. On the basis of these

three steps, the neural network was designed to have an input layer, an output layer, and three hidden

layers in between, as shown in Figure 35. The input layer received the six variables: 𝑣𝑙(𝑡), 𝑔(𝑡), 𝑣𝑓(𝑡),

𝑏 = 4.5 and 𝑎max = 2.6; the output layer was the predicted velocity of the follower; in between, the

first hidden layer was designed to initially process the input information while the other two layers were

designed for calculating the safe velocity and desired velocity, respectively. Each hidden layer used the

sigmoid activation function.

Figure 33: Data Collection by Vehicle Pairs

Figure 34: Velocities of Leaders and Followers

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 57

Figure 35: Neural Network Architecture

The loss function we adopted was squared error loss, as written as equation (5). In the loss function, we

compared the predicted velocity �̂�𝑖(𝑡 + 𝑇) and the actual velocity 𝑣𝑖(𝑡 + 𝑇) of vehicle 𝑖, then we added

up all the squared differences between the two. After using 10-fold cross-validation, we decided to use

the learning rate 10−5 and the parameter ℎ = 8 in the neural network. The training result can be seen

in Figure 36. The final validation loss and the test loss were 2.403 and 4.240, respectively.

However, features provided by the last two hidden layers did not have physical meanings. Feeding a set

of information of another simulated vehicle pair to the neural network, we obtained many negative

outcomes from the last two layers. Table 18 documents the outcomes from the second hidden layer.

The result reflects that a neural network is powerful at fitting data; however, interpreting the black box

is difficult. It also implies that the model yielded by a neural network could be a more difficult puzzle if

we added more layers and neurons aiming to increase prediction accuracy. In fact, learning physical

dynamics from data is a data-driven discovery question, which has been tackled for decades mostly by

statistical models on understanding statistical relationships [34, 35]. However, statistical relationships

between the input and the response are usually given by humans, meaning that training a statistical

model can be limited by human knowledge. In other words, discovering the underlying structure of a

dynamical system directly from data remains underexplored. The problem of discovering insights from

data is worth further study.

min
𝑤

∑(𝑣𝑖(𝑡 + 𝑇) − �̂�𝑖(𝑡 + 𝑇))
2

𝑖=1

 (5)

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 58

Figure 36: Training and Validation Results

Table 18: Outcomes of the Second Hidden Layer vs. Given Variables

The second hidden layer

10.680

-22.1601

-197.6575

-119.4152

35.4486

Input Variables

𝑣𝑠 12.533

𝑔(𝑡) 2.5

𝑎max 2.6

𝑏 4.5

𝑣𝑙(𝑡) 12.533

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 59

Section 6: Discussion and Conclusion

The goal of this project was to establish a transportation simulation platform that can model connected

and automated transportation systems at multiple scales. For this research, we proposed a framework

for integrating traffic models that can simulate transportation systems at different scales. We used

open-source transportation simulators, i.e., MATSim and SUMO, as the main simulation models. We also

chose Unity to manage sub-microscopic visualization because Unity gives developers great freedom to

create any gaming environment. This project developed a way to not only include the three model

components in a platform but also established a communication system for them to interact with each

other. Meanwhile, we chose the Greater Seattle area as the study region for implementing the

developed VTD platform. The network datasets were calibrated to the observed traffic data. In

summary, this project had three key parts: (i) development and implementation of the VTD multiscale

simulation platform, (ii) calibration of the SUMO network, and (iii) calibration of the MATSim network.

The SUMO network was calibrated by following the system performance simulation calibration criteria

provided by FHWA [36]. The SUMO simulation was built by using PSRC OD data for vehicle and

pedestrian demands, and GTFS data for public transit. To conduct the simulation, this project used loop

data from WSDOT and travel time data from NPMRDS for field measurements. Our calibration results

showed that 80 percent of the traffic volumes and 50 percent of the travel times were well calibrated.

The calibration process had several limitations. First, travel time calibration should be enhanced; one of

the main issues for travel time calibration is a lack of auxiliary data resources. With only OD demand in

hand, it was hard to speculate the traffic state for each road segment accurately. For future study, a

project should attempt to find data for traffic volume calibration along the local street. Second, the data

resource for the input OD data (2014) and the filed measurement data (2018) were from different years.

Such variance may also play a role in calibration performance. Third, more calibration for SUMO should

be conducted, such as route calibration and car-following model calibration suggested by the FHWA.

The project team will continue to explore and gather more data for further calibrations.

The MATSim network was calibrated to well represent traffic in the real world. The Greater Seattle

network combined network data from the City of Seattle and network data from the City of Bellevue,

both published in 2020. The calibration of the MATSim network considered home-based work traffic

demand extracted from PSRC OD data. During the project working period, the latest demand

estimations by the PSRC were based on a 2014 survey. To be consistent with the demand data, we

collected 2014 bus route data from the GTFS. To simulate demand in which either the trip origin or

destination was outside of our study area, we deployed TAZ gates around the simulated region. The TAZ

gates were selected from PSRC TAZ data. The latest TAZ dataset that we could access during our project

working period was from 2010. On the basis of these, traffic links were calibrated to real traffic data by

using average observed traffic volumes and speeds. Because of the SR 99 tunnel project [37], we

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 60

collected traffic volume data from SDOT and traffic speed data from INRIX recorded in May 2018. We

mainly calibrated link speed limits and link capacities for the MATSim network. The network links were

categorized into highway and arterial types. These two types of links were calibrated individually for link

speed limits. The simulated speeds of both types of links were calibrated to be within a 10 percent

difference from observed speeds. The capacity calibration focused only on arterial links. We chose 21

checkpoints on major streets. The calibrated traffic volumes were 11.55 percent different, on average,

from the observed volumes. However, the calibration processes can be improved for the following

reasons. First, datasets collected in this project were generated or recorded in different years because of

the survey year and the tunnel project discussed above. With the year difference between traffic data

and network data, traffic might have behaved differently from the real world in the study area even

though there was only a marginal gap at the checkpoints. Second, the network calibration was mainly

for the Seattle part and can be expanded. Third, capacity calibration for highway links remained undone.

The calibration would have been closer to perfect if it could have been extended to the Bellevue part

and included all types of network links.

The VTD platform was developed and implemented by a computer with 32 GB memory and an Intel

Core i9-9900K CPU. The implementation of the VTD platform showed capabilities of traffic simulation at

multiple scales. Regarding the design of the integration between the macroscopic simulation model (i.e.,

MATSim) and the microscopic simulation model (i.e., SUMO), the implementation showed that vehicles

traveling between the MATSim and the SUMO areas can be simulated by this VTD platform. The

communication between the microscopic simulation model (i.e., SUMO), and the vehicle

simulation/visualization model (i.e., Unity 3D) was designed to be managed by the control center. The

implementation also displayed that the vehicle simulation/visualization model can visualize the ego car

and the surrounding environment. The implementation showed that the VTD platform has the potential

to help simulate traffic behaviors in a study area at multiple scales. With the integration between the

macroscopic simulation model and the microscopic simulation model, researchers can model traffic

flows and, at the same time, vehicle interactions, e.g., lane-switching and car-following. Researchers can

also observe vehicle interactions at the vehicle level by using the vehicle simulation/visualization model.

This platform can also help test and improve traffic control algorithms. We tested a multi-scale, signal-

vehicle coupled control algorithm on this platform. The control flexibilities enabled us to design complex

control algorithms and various indexes that can be collected and provided us with plentiful data to

evaluate and improve the control algorithms. We also used the simulated trajectory data to learn the

car-following model. Passenger vehicles were the only vehicle type considered in this car-following

model learning task. The learning used a neural network that had three hidden layers. The neural

network gave us a decent model. The nonlinear model, however, did not provide physical insights

between the input and output variables. This result leaves a valuable research topic for the project

team.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 61

Section 7: Future Research Directions

Below we discuss potential future research directions for improving the calibration for the SUMO

network, calibration for the MATSim network, the VTD platform development, and possible applications

using the VTD platform. For the SUMO network, further calibration may consider different types of

vehicles, such as freight. Apart from using the GEH for traffic volume and travel time calibration (system

performance calibration), future calibration of SUMO can focus on more detailed features such as route

calibration. As discussed in the previous chapter, the MATSim network calibration used traffic data from

different years, and several of them had gaps of about six years from the network datasets.

Furthermore, the calibration focused mainly on the City of Seattle. The network can be calibrated to the

latest travel estimations on the basis of the updated survey data. Bellevue can also be included in the

calibration process for the latest datasets. For the VTD platform development, we simplified the

simulation features of the vehicle simulation/visualization model. This feature has the potential for

future development. Specifically, the vehicle simulation/visualization model can further simulate CAVs

equipped with onboard sensors, such as LiDAR. The CAVs in the vehicle simulation/visualization model

can report the latest sensing data back to the control center. These data can then provide extra

information for the control center for traffic control, including traffic signal control, vehicle control, or

coupled signal-vehicle control. This feature may rely on techniques such as computer vision (CV)

algorithms and simultaneous localization and mapping (SLAM).

Speaking of applications, the VTD platform can help provide insights into traffic dynamics. The VTD

platform may not only help to verify existing traffic dynamics models but also make it possible to

discover new or simplified models for traffic dynamics. More specifically, the VTD platform has the

potential to test and verify link-level traffic dynamic models. Researchers can use the traffic data

simulated by the VTD platform to further validate existing link dynamic models, such as the point queue

model, link transmission model, and double queue model. In this potential analysis, a link-level

fundamental diagram could further provide the relationship between the network link properties (e.g.,

capacities and speed limit) and the characteristics of the fundamental diagram (e.g., shape and slope). It

could also be possible to learn traffic dynamics from the VTD simulated data using data-driven machine

learning techniques.

For the multi-scale, signal-vehicle coupled control algorithm, the potential future research directions

include the following: (i) testing the algorithm on a larger area and (ii) integrating Unity into the testing

to simulate the vehicle dynamics more accurately and generate more detailed vehicle data. For the

traffic dynamics learning task, the project team plans to continue to extract meaningful insights from

the collected data. This research topic could be (i) developing a neural network that can capture physical

relationships between the input and the targets, (ii) testing the neural network on multiple vehicle

types, and (iii) testing on real data with more realistic vehicle dynamic models.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 62

References
B i b l i o g r a p h y

[1] J. X. Ban, Q. Guo, O. Angah and Z. Liu, "Vehicle-Traffic Control with Limited-Capacity
Connected/Automated Vehicles," C2SMART, New York, 2020.

[2] K. W. Axhausen, A. Horni and K. Nagel, The Multi-Agent Transport Simulation MATSim, London:
European Research Council (ERC), 2016.

[3] X. Zhou and J. Taylor, "DTAlite: A queue-based mesoscopic traffic simulator for fast model
evaluation and calibration," Cogent Engineering, vol. 1, no. 1, 2014.

[4] PTV, "Multimodal Traffic Simulation Software," PTV Group, [Online]. Available:
https://www.myptv.com/en/mobility-software/ptv-vissim. [Accessed 20 June 2022].

[5] abstreet, "A/B Street," 12 June 2022. [Online]. Available: https://github.com/a-b-street/abstreet.
[Accessed 20 June 2022].

[6] Eclipse, "Simulation of Urban MObility," Eclipse SUMO, [Online]. Available:
https://www.eclipse.org/sumo/. [Accessed 20 June 2022].

[7] I. T. Haman, V. C. Kamla, S. Galland and J. C. Kamgang, "Towards an Multilevel Agent-based Model
for Traffic Simulation," Procedia Computer Science, vol. 109, pp. 887-892, 2017.

[8] A. Poschinger, R. Kates and H. Keller., "Coupling of Concurrent Macroscopic and Microscopic
Traffic Flow Models using Hybrid Stochastic and Deterministic Disaggregation," in Transportation
and Traffic Theory in the 21st Century. Proceedings of the 15th International Symposium on
Transportation and Traffic Theory, University of South Australia in Adelaide, Austral, 2002.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms, MIT Press, 1994.

[10] K. C. M. Transit, "2014 Service Guidelines Report," King County, 2014.

[11] F. Poletti, "Public transit mapping on multi-modal networks in MATSim," IVT, ETH Zurich, Zurich,
2016.

[12] B. Y. He, J. Zhou, Z. Ma, D. Wang, D. Sha, M. Lee, J. Y. Chow and K. Ozbay, "A validated multi-agent
simulation test bed to evaluate congestion pricing policies on population segments by time-of-day
in New York City," Transport Policy, vol. 101, pp. 145-161, 2021.

[13] D. Ziemke, I. Kaddoura and K. Nagela, "The MATSim Open Berlin Scenario: A multimodal agent-
based transport simulation scenario based on synthetic demand modeling and open data,"
Procedia Computer Science, vol. 151, pp. 870-877, 2019.

[14] M. Balmer, K. Meister, M. Rieser, K. Nagel and K. W. Axhausen, "Agent-based simulation of travel
demand: Structure and computational performance of MATSim-T," Arbeitsbericht Verkehrs - und
Raumplanung 504, 07 2008.

[15] S. Hörl, M. Balac and K. W. Axhausen, "Dynamic demand estimation for an AMoD system in Paris,"
2019 IEEE Intelligent Vehicles Symposium (IV), 09-12 June 2019.

[16] A. Horni, K. Nagel and K. W. Axhausen, "High-resolution destination choice in agent-based demand
models," Arbeitsberichte Verkehrs - und Raumplanung 682, August 2011.

[17] J. C. Spall, "A stochastic approximation algorithm for large-dimensional systems in the Kiefer-
Wolfowitz setting," Proceedings of the 27th IEEE Conference on Decision and Control, 1998.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 63

[18] J. C. Spall, "Implementation of the simultaneous perturbation algorithm for stochastic
optimization.," IEEE Transactions on aerospace and electronic systems, vol. 34, no. 3, pp. 817-823,
1998.

[19] J. C. Spall, "An overview of the simultaneous perturbation method for efficient optimization,"
Johns Hopkins apl technical digest, vol. 19, no. 4, pp. 482-492, 1998.

[20] SUMO, "netconvert," 27 6 2022. [Online]. Available: https://sumo.dlr.de/docs/netconvert.html.

[21] SUMO, "Road Networks," 27 6 2022. [Online]. Available:
https://sumo.dlr.de/docs/Networks/SUMO_Road_Networks.html.

[22] "SoundCast: the PSRC Activity-Based Model," 27 6 2022. [Online]. Available:
https://github.com/psrc/soundcast.

[23] KCM, "Developer Resources," 27 6 2022. [Online]. Available:
https://kingcounty.gov/depts/transportation/metro/travel-options/bus/app-center/developer-
resources.aspx.

[24] "Synchro Studio," 28 6 2022. [Online]. Available: https://www.trafficware.com/synchro-
studio.html.

[25] K. Udomsilp, T. Arayakarnkul, S. Watarakitpaisarn, P. Komolkiti, J. Rudjanakanoknad and C.
Aswakul, "Traffic Data Analysis on Sathorn Road with Synchro Optimization and Traffic
Simulation.," Engineering Journal 21(6), pp. 57-67, 2017.

[26] S. K. Singh, P. Komolkiti and C. Aswakul, "Impact Analysis of Start-up Lost Time at Major
Intersections on Sathorn Road Using a Synchro Optimization and a Microscopic SUMO Traffic
Simulation," IEEE, pp. Vol 6, pp. 6327-6340, 2018.

[27] "Traffic Lights - SUMO Documentation," 28 6 2022. [Online]. Available:
https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html.

[28] Trafficware, "Synchro Studio 10 User Guide," [Online]. Available:
https://www.trafficware.com/synchro-studio.html.

[29] "Traffic Lights with NEMA Phases," 28 6 2022. [Online]. Available:
https://sumo.dlr.de/docs/Simulation/NEMA.html.

[30] "Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling
Software.," 28 6 2022. [Online]. Available:
https://ops.fhwa.dot.gov/trafficanalysistools/tat_vol3/sect5.htm..

[31] "Lane- or Edge-Based Traffic Measures - SUMO Documentation.," 29 6 2022. [Online]. Available:
https://sumo.dlr.de/docs/Simulation/Output/Lane-_or_Edge-based_Traffic_Measures.html.

[32] G. Qiangqiang and X. J. Ban, "A Multi-scale Control Framework for Urban traffic Control with
Connected and Automated Vehicles," Submitted to Transportation Research Part B:
Methodologies.

[33] D. Krajzewicz, G. Hertkorn, C. Rössel and P. Wagner, "SUMO (Simulation of Urban MObility) - an
open-source traffic simulation," in Proceedings of the 4th Middle East Symposium on Simulation
and Modelling (MESM20002), Berlin-Adlershof, 2002.

[34] S. H. Rudy, S. L. Brunton, J. L. Proctor and J. N. Kutz, "Data-driven discovery of partial differential
equations," Science Advances, vol. 3, no. 4, 2017.

[35] S. L. Brunton, J. L. Proctorb and J. N. Kutz, "Discovering governing equations from data by
sparseidentification of nonlinear dynamical systems," Proceedings of the national academy of
sciences, vol. 113, no. 15, pp. 3932-3937, 2016.

 A Multiscale Simulation Platform for Connected and Automated Transportation Systems 64

[36] "Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling
Software," [Online]. Available: https://ops.fhwa.dot.gov/trafficanalysistools/tat_col3/sect5.htm.
[Accessed 29 6 2022].

[37] WSDOT, "SR 99 tunnel," [Online]. Available: https://wsdot.wa.gov/construction-planning/search-
projects/sr-99-tunnel. [Accessed 20 6 2022].

[38] J. Bongard and H. Lipson, "Automated reverse engineering of nonlinear dynamical systems,"
Proceedings of the National Academy of Sciences, vol. 104, no. 24, pp. 9943-9948, 2007.

[39] M. Schmidt and H. Lipson, "Distilling Free-Form Natural Laws from Experimental Data," science,
vol. 324, no. 5923, pp. 81-85, 2009.

[40] J. Koza, Genetic Programming: On the Programming of Computers by Meansof Natural Selection,
Cambridge, MA: MIT Pres, 1992.

[41] T. Back, D. B. Fogel and Z. Michalewicz, Evolutionary Computation 1: Basic Algorithms and
Operators, CRC press, 2018.

[42] B. K. Petersen, M. L. Larma, T. N. Mundhenk, C. P. Santiago, S. K. Kim and J. T. Kim, "Deep symbolic
regression: Recovering mathematical expressions from data via risk-seeking policy gradients," in
International Conference on Learning Representations, 2021.

	Executive Summary
	Table of Contents
	Executive Summary 1
	Section 1 Research Background 5
	Section 2 The Framework for the VTD Platform 7
	Section 3: MATSim Calibration 21
	Section 4: SUMO Calibration 35
	Section 5: Testing Results 52
	Section 6: Discussion and Conclusion 59
	Section 7: Future Research Directions 61
	References 62
	List of Figures
	List of Tables
	Section 1 Research Background
	Section 2 The Framework for the VTD Platform
	Subsection 2.1: MATSim-SUMO Integration
	Subsection 2.1.1: Design of Trip Integration
	Subsection 2.1.2: Design of the Integration of Network Representations
	Subsection 2.1.3: Development of the MATSim-SUMO Integration

	Subsection 2.2: SUMO-Unity Integration
	Subsection 2.2.1: Design of the SUMO-Unity Integration
	Subsection 2.2.2: Development of the SUMO-Unity Integration

	Section 3: MATSim Calibration
	Subsection 3.1: Network Set-up
	Subsection 3.2: Network Calibration
	Subsection 3.2.1: Travel Plan Setup
	Subsection 3.2.2: Network Calibration

	Section 4: SUMO Calibration
	Subsection 4.1: Network Set-up
	Subsection 4.1.1 Network File Set-up
	Subsection 4.1.2 Route File Set-up
	Subsection 4.1.3 Additional File Set-up

	Subsection 4.2: Network Calibration

	Section 5: Testing Results
	We show in this section some testing results using the developed multi-scale simulation platform, including multiscale traffic-vehicle control algorithms and learning traffic dynamics.
	Subsection 5.1: Testing of a Multiscale Signal-Vehicle Coupled Control Algorithm
	Subsection 5.2: Investigation of Traffic Dynamics

	Section 6: Discussion and Conclusion
	Section 7: Future Research Directions
	References

