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Executive Summary 

Computer vision can turn existing infrastructure into smart sensors in a myriad of ways, and new 

applications are being continuously developed. While state-of-the-art computer vision techniques are 

well-documented in literature, this technology has not widely applied to existing transportation 

infrastructures for routine operations yet. This project aims to develop a deep learning-based data 

acquisition and analytics approach using vision-based sensors (i.e., cameras) to understand cities with 

machine eyes. The goal is to demonstrate the cost-effectiveness of computer vision technology to 

generate a new stream of mobility and safety data, thereby supporting planning and operational 

strategies. This approach will leverage both existing transportation infrastructure and emerging probe 

data from connected and automated vehicles (CAVs).  

The research team first assessed the maturity of various smart city applications using computer vision 

and object detection (e.g., pedestrian detection, work zone identification, curb lane usage, connected 

and automated vehicles [CAVs]). Furthermore, needs assessment from multiple local agencies, including 

New York City (NYC) Department of Transportation (DOT), NYC Department of Construction and Design 

(DDC), NYC Department of City Planning (DCP), NYC Office of Technology and Innovation (OTI), was 

obtained through a voluntary advisory board. Based on the feedback received, two applications: 1) 

urban work zone detection, and 2) safety risk index view map, were developed.  

The key accomplishments of the project are summarized as follows. The team conducted a literature 

review on computer vision for smart cities with a focus on transportation and summarized a resource 

list that lists publicly available traffic camera systems in the U.S. The team also established an automatic 

pipeline for data acquisition and developed a web-based tool that integrated the computer vision 

algorithms for the two selected applications. The urban work zone application (WorkZoneX) leverages 

900+ traffic cameras in NYC and provides real-time urban work zone identification, active work zone 

with workers detection, work zone size estimation, and traffic condition around the work zones. 

WorkZoneX achieved an average mAP of 74.1% across all work zone classes, an accuracy of 98.4% for 

scene identification, and an accuracy of up to 89.52% for size estimation. The safety risk index map 

application (SAFExMAP) provides a risk indicator scoring system with a map interface that leverages 

near-miss data gathered from in-vehicle cameras via computer vision. A positive spatial correlation was 

found between near misses and crashes for the study area. Both applications were optimized for web-

based access and prototyped for real-world deployment. A cost estimation of deploying the two 

applications was provided. This project stands to facilitate the adoption of computer vision in smart 

cities, potentially positively impacting transportation planning and operations by providing cost-

effective solutions to the industry. 
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Section 1 Introduction 

1.1 Background  

The rapid development of the internet of things (IoT), sensing technologies, Artificial Intelligence (AI), 

machine learning and deep learning techniques, have yielded new perspectives on how novel 

technologies can be applied to smart cities. The New York City IoT Strategy report  highlighted that the 

city has been home to a major expansion in IoT and AI use in the last decade, with impacts on many 

areas, including its transportation system. As a subfield of AI, Computer Vision is showing promising 

potential in understanding the realistic dynamics of cities. While cities are complex by nature, especially 

cities like NYC, the applications of computer vision show progress in tackling a variety of complex 

physical and non-physical visual tasks. In addition, computer vision can turn existing infrastructure into 

smart sensors in a myriad of ways, and new applications are being continuously developed. Agencies 

including NYC Department of Transportation (NYC DOT), NYC Department of Design and Construction 

(NYC DDC), and NYC Mayor's Office of the Chief Technology Officer (CTO) have identified a “Wishlist” of 

area of interests in using computer vision technologies for the City. The Wishlist include using computer 

vision tools to validate the accuracy of collected mobility data (e.g., turning movement counts, vehicle 

classifications, vehicle and pedestrian speed, etc.), parking utilization, work zone assessment, incident 

detection, mobility aids detection, vehicle-pedestrian conflicts as well as assessing how the computer 

vision algorithm can be trained for NYC conditions where there may be difficult sightlines and blockages 

and restrictions on camera placement. This “Wishlist” provides the foundation of understanding what 

can the technology offer and what are the needs from the agencies (Figure 1).   

 

Figure 1. Examples of Smart City Applications Using Computer Vision 
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On the one hand, while many of the innovative computer vision technologies require agencies to 

replace their existing intelligent transportation systems (ITS) infrastructure with new camera devices or 

sensors, others can leverage existing resources making them more cost-effective. Utilizing existing ITS 

infrastructure not only reduces the deployment cost, but also reduces the chance of its obsolescence. 

The Closed-circuit television (CCTV) system, which is available for many transportation systems, is a 

valuable source of traffic condition information and can be used as vision sensors. Traffic video data can 

provide rich information, such as traffic volume, travel speed, curb activities, and incident information 

(Figure 2), to facilitate traffic operations and management. 

 

 Figure 2. Computer Vision Applications Using Traffic Cameras (Source: C2SMART) 

On the other hand, emerging transportation data sources, such as camera-based imagery recorded from 

probe vehicles and CAVs can be used to augment existing transportation databases and enable real-time 

mobility and safety monitoring for our transportation systems. By sensing the driving scenes, vast 

amount of information can be extracted – free space, vehicle and pedestrian detection, traffic sign 

recognition, and lane markings (Figure 3). By connecting this image-based data with vehicle dynamics 

such as acceleration and braking, crucial information on dangerous driving and safety based on the 

environment can be learned. 
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 Figure 3. Computer Vision Applications Using Probe Vehicle/CAV-based Cameras (Source: 

Mobileye) 

These new streams of transportation and mobility data collected and analyzed can be used in various 

ways. For example, pedestrian and bike detection output can provide input to the city’s non-motorized 

count program; vehicle count and classification can be used to fill data gaps for traffic impact studies 

such as NYC congestion pricing before-and-after analysis; curb activity detection can provide support for 

new curb strategies like evaluating potential smart loading zones; pedestrian intension detection can be 

applied to connected and automated vehicle pedestrian safety applications. This fully remote approach 

also allows for data collection without deploying humans in the field providing not only labor cost 

savings, but also a safe alternative during public health crises in which disease spread is a concern. 

However, there is a need to assess the maturity of these applications and the feasibility of connecting 

various different data sources concurrently. For example, fixed traffic camera imagery has limitations in 

terms of blind spots and visual conditions that vehicle-based imagery can overcome. When applying 

them to cities like NYC, the unique existing ITS infrastructure being used as the vision sensors must be 

investigated. Further research is needed to better understand the process and realize computer vision’s 

true potential for large scale complex urban systems. Specifically, there is a lack of linking the 
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technology to the needs of agency users and validate and quantify the perceived benefits of computer 

vision technology to the existing data collection processes and planning/operation strategies. 

1.2 Study Objectives 

The primary objective of this research is to develop a cost-effective deep learning based data acquisition 

and analytics tool using vision-based sensors to facilitate smart transportation systems. We mainly used 

NYC as a living lab as it has a complex urban transportation system that provides opportunities for 

applying computer vision for different use cases. Given the limited duration of the project, we 

developed computer vision applications for two selected use cases that are already identified as high 

priority by the stakeholders and prepare a summary of existing and potential smart transportation 

applications that can benefit from the use of computer vision. The two selected use cases are: 1) real-

time urban work zone detection, and 2) safety risk map for dangerous driving and vehicle-

pedestrian/cyclist near misses. Specifically, the research aims to achieve the following goals: 

● Identify smart city applications with a focus on transportation using computer vision and object 

detection from the existing literature and assess their maturity and state of adoption.  

● Understand the needs from stakeholders and build a list of available CCTV systems in the U.S. 

● Establish an automatic pipeline using computer vision algorithms for two selected use cases and 

validate their feasibility and applicability using existing traffic cameras and crowd sourced CAV-

based traffic and camera data.  

● For the safety risk map use case, develop a road risk scoring map application for all road users as 

well as vulnerable road user (VRU) near misses, including pedestrians and cyclists. For the work 

zone use case, develop an application to identify real-time work zones, traffic condition around 

work zone and validate temp work zones. 

● Evaluate the cost-effectiveness of the proposed solutions. 

This goal of this project also aligns with ongoing efforts with NYC DDC and NYC DOT through the NYC 

Town + Gown efforts as part of the City’s broader Vision Zero initiative to improve the safety of city 

streets and previous experience from the COVID-19 social distancing study1. 

 
1 University Transportation Centers (UTC) Programs, UTC Spotlight, “Using Video Feeds from Public Traffic Cameras 

and Computer Vision to Analyze Social Distancing and Travel Patterns during the COVID-19 Pandemic,” Accessed 
November 11, 2021.  

https://www.transportation.gov/utc/using-video-feeds-public-traffic-cameras-and-computer-vision-analyze-social-distancing-and
https://www.transportation.gov/utc/using-video-feeds-public-traffic-cameras-and-computer-vision-analyze-social-distancing-and
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As a part of the safety risk map use case, the research team collaborated with its industry partner, 

Mobileye, a global leader in the development of vision technology for Advanced Driver Assistance 

Systems (ADAS) and autonomous driving. Mobileye has one of the world’s largest crowdsourcing fleet, 

which harvesting 450M miles globally. Figure 4 shows its equipped fleet vehicle coverage across North 

America. Mobileye has rich mobility intelligent information updated at a high refresh rate and near-real 

time information and imagery about traffic flow and traffic obstructions. For the proposed research 

project, Mobileye will share its cloud sourced connected vehicle data for NYC from camera-based 

technology that advance safety and urban mobility. 

1.3 Collaborative Approach 

This research applies a collaborative approach that facilitates partnerships between academic 
institutions, industry and government agencies (Figure 4). 
 

 

 Figure 4. Collaborative approach 
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Section 2 Literature Review 

Computer vision is reshaping the transportation industry and bringing its unique capabilities to the table 

to enable next generation smart transportation systems in many different ways. The state-of-the-art of 

IoT strategies and computer vision techniques is well-studied in the literature, some has already been 

tested and used for certain use cases, but this technology has not widely applied in the day-to-day 

operation to existing transportation infrastructures yet. A comprehensive review of both state-of-art 

and state-of-practice as well as gaps in terms of use cases and applications is needed. In addition, 

several major challenges that hinder further advances in computer vision-based smart transportation 

application development remain. This includes how to develop the transportation-specific computer 

vision techniques through advanced artificial intelligence (AI) and machine learning (ML) techniques; 

how to make use the outputs of the computer vision-based systems to enhance traffic safety and 

situational awareness; how to customize the solutions based on different objectives from the agencies 

and road users; how to improve the accuracy of these systems under conditions such as adverse 

weather; and finally, how to maintain the cost-effectiveness of these computer vision-based 

transportation solutions. 

We conducted a multi-facet literature review that first examined the current use cases and 

transportation related applications that utilize the computer vision methodologies with a focus in urban 

areas, especially work zone and safety applications, and evaluated their applicability to various tasks of 

urban analytics, state of adoption, and limitations. The literature review then assessed if and how 

transportation equity is considered in the current state of adoption of computer vision/AI technology, 

for example, whether state-of-the-art object detection systems have equitable predictive performance 

on pedestrians with different skin tones. 

2.1 Publicly Available Traffic Camera Systems in the U.S. 

Using a screening analysis, we identified various existing publicly available CCTV camera systems across 

45 states in the US. Figure 5 shows their spatial distribution and system scale. Table 1 lists the name of 

these systems and their streaming features, camera resolution, system scale and weather these cameras 

are facing urban streets or highways.  
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 Figure 5. Spatial distribution and scale of the selected camera systems in the U.S. 

Table 1 List of the selected camera systems in the U.S. 

City/State #Cameras Continuous stream? Resolution  Highway/Urban Street 

NYC, NY 901 Every 1-5 seconds Moderate 
Both (some are at 
intersections) 

NY 2,414 Yes Moderate 
Most highways and 
intersections 

Nevada 529 Yes Low Only highways and big roads 

DC, District of 
Columbia 

200+ Every 3-7 seconds Low Mostly at crosswalks 

Seattle, 
Washington 

200+ Yes High Variety of different places 

Florida  3,586 Yes Moderate Only highways and big roads 

Austin, Texas 400+ 
Image updates every 
hour or so 

Low Good coverage for highways 

15%

24%

38%

16%

7%

#CAMERAS

<50

50-100

100-500

500-1000

>1000

https://webcams.nyctmc.org/
https://511ny.org/#:Alerts
https://nvroads.com/icx/pages/cameras.aspx
http://app.ddot.dc.gov/
http://app.ddot.dc.gov/
https://web6.seattle.gov/travelers/
https://web6.seattle.gov/travelers/
https://fl511.com/
https://its.txdot.gov/its/District/AUS
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Arlington, Virginia 200+ Yes Moderate 
Most in downtown and 
airport areas 

Maryland 200+ Yes Low 
Covers big cities of DC and 
Baltimore and between cities, 
only highways 

Illinois 
around 
1,000 

Image updates every 
few minutes 

Low 
Only highways and 
expressways in the state 

Minneapolis, 
Minnesota 

around 100-
200 

Yes (videos can be 
played) 

Low Only highways 

Oklahoma City, 
Oklahoma 

around 100 Yes High 
Concentrated in the city, only 
highways 

Birmingham, 
Alabama 

around 100-
200 

Yes Moderate Only highways 

Apex, North 
Carolina 

1 Yes 720p One urban street 

Massachusetts 
around 300-
400 

Image updates every 
5-15 seconds 

Low Only highways 

California around 500 Yes Low Only highways 

Georgia 3,398 
Image updates every 
few minutes to hours 

Low Only highways 

Arizona 566 
Image updates every 
few minutes to hours 

High Only highways 

Michigan around 400 
Image updates every 
10-30 seconds 

Low Only highways 

New Jersey around 200 Yes Low Only highways 

Colorado 1 Yes Low One highway 

Oregon 100+ 
Image updates every 
few hours 

Moderate Only highways 

Utah around 200 
Image updates every 
few hours 

Moderate Only highways 

Maine 13 
Image updates every 
few minutes 

Moderate Only highways 

Tennessee 562 Yes Low Only highways 

Louisiana 10 Yes Low Only highways 

Connecticut 318 
Image updates every 
5-15 seconds 

Moderate Only highways 

South Carolina around 200 Yes Moderate Only highways 

Wisconsin 431 Yes High Only highways 

Mississippi 26 
Image updates every 
few seconds 

Moderate Only highways 

Arkansas around 100 Yes Moderate Only highways 

Iowa 973 
Image updates every 
few minutes 

Moderate Only highways 

https://transportation.arlingtonva.us/live-traffic-cameras/
https://chart.maryland.gov/map/
https://travelmidwest.com/lmiga/cameraReport.jsp?location=GATEWAY.IL.I-94
https://511mn.org/@-93.70989,45.19645,9?show=metroTrafficMap,roadReports,weatherWarningsAreaEvents,stationsAlert,trafficSpeeds,otherStateInfo
https://511mn.org/@-93.70989,45.19645,9?show=metroTrafficMap,roadReports,weatherWarningsAreaEvents,stationsAlert,trafficSpeeds,otherStateInfo
https://oktraffic.org/#/map?lat=35.4654874869961&lon=-97.49872005310058&origin=click&rand=1655155760304
https://oktraffic.org/#/map?lat=35.4654874869961&lon=-97.49872005310058&origin=click&rand=1655155760304
https://algotraffic.com/Cameras
https://algotraffic.com/Cameras
https://www.apexnc.org/435/Downtown-Webcam
https://www.apexnc.org/435/Downtown-Webcam
https://www.mass.gov/info-details/massachusetts-traffic-map
https://cwwp2.dot.ca.gov/vm/iframemap.htm
https://511ga.org/cctv?start=0&length=10&order%5Bi%5D=1&order%5Bdir%5D=asc
https://www.az511.gov/cctv?start=0&length=10&order%5Bi%5D=3&order%5Bdir%5D=asc
https://mdotjboss.state.mi.us/MiDrive/map?cameras=true&lat=42.934&lon=-85.724&zoom=15&id=2184
https://511nj.org/camera
https://www.codot.gov/projects/archived-project-sites/i70vailunderpass/streaming-camera
https://www.tripcheck.com/Pages/Custom-Cameras
http://udottraffic.utah.gov/
https://www.maineturnpike.com/Traveler-Services/Traffic-Cams.aspx
https://www.knoxvilletn.gov/residents/streets_traffic_transit/tdot_smart_way_traffic_cameras
https://www.511la.org/cctv?start=0&length=10&order%5Bi%5D=1&order%5Bdir%5D=asc
https://cttravelsmart.org/cctv?start=0&length=10&order%5Bi%5D=0&order%5Bdir%5D=asc
https://www.511sc.org/#zoom=6.405395117843127&lon=-80.72462271068872&lat=33.54446902822535&dmsg&rest&cams&other&cong&wthr&acon&incd&trfc
https://511wi.gov/cctv?start=0&length=10&order%5Bi%5D=1&order%5Bdir%5D=asc
https://mdotjboss.state.mi.us/MiDrive/cameras?route=&county=%20Washtenaw%20County&_=1575322832393
https://www.idrivearkansas.com/
https://511ia.org/list/cameras
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Kansas 537 
Image updates every 
few minutes 

Moderate Only highways 

Nebraska around 100 
Image updates every 
hour 

Moderate Only highways 

Wyoming 25 
Image updates every 
hour 

Moderate Only highways 

Idaho around 100 
Image updates every 
few minutes 

Low Only highways 

Rhode Island 46 
Image updates every 
few minutes 

Moderate 
Major highways and a few 
local streets 

New Hampshire 100-200 
Image updates every 
few minutes 

Low Only highways 

Delaware around 100 Yes Moderate Only highways 

West Virginia around 100 Yes Moderate Only highways 

Vermont 51 
Image updates every 
few minutes 

Low Only highways 

South Dakota less than 100 
Image updates every 
few minutes to hours 

Low Only highways 

North Dakota around 100 
Image updates every 
few minutes 

Moderate 
Major highways and a few 
local streets 

New Mexico 178 
Image updates every 1 
minute 

Low (320x240) 
Major highways and a few 
local streets 

Kentucky 85 
Image updates every 
few minutes 

Low (300x220) 
Major highways and a few 
local streets 

Montana 100-200 
Image updates every 
few hours 

Low (213x120) Only highways 

 

2.2 Smart Transportation Applications Using Computer Vision 

Many computer vision approaches have been introduced for vehicle detection. Based on these 

approaches, numeric research has been focusing on traffic counting and traffic monitoring, including 

density and speed estimation, congestion detection and so on. For example,  Muhammad (Fachrie, 

2020) created a simple vehicle counting system to help human in classify and counting the vehicles that 

cross the street. YOLOv3 was used for object detection and pre-trained model was applied using 

Common Objects in Context (COCO) dataset, a large-scale object detection, segmentation, and 

captioning dataset that has annotations for 80 different objects. The system achieved a detection 

accuracy as high as 96.96% with ‘motorcycle’ and ‘car’ being the most accurate and ‘truck’ and ‘bus’ 

being the worst accurate vehicle category. Most of the studies used a centralized detection system with 

a few utilizing edge computing. Liu et al. (Liu et al., 2021) proposed a two-tier edge computing based 

https://kandrive.org/list/cameras
https://new.511.nebraska.gov/event/NECARS5-21011/@-103.27281,43.32271,6?show=roadReports,wazeReports,winterDriving,stationsAlert,weatherWarningsAreaEvents,weatherRadar
https://wyoroad.info/Highway/webcameras/I25Cameras.html
https://511.idaho.gov/@-117.64148,45.96993,7?show=roadReports,wazeReports,cameras,trafficSpeeds,stationsAlert,weatherWarningsAreaEvents
https://www.dot.ri.gov/travel/cameras_metro.php
https://newengland511.org/
https://deldot.gov/map/index.shtml
http://wv511.org/
https://vtrans.vermont.gov/operations/rwis
https://www.sd511.org/#zoom=8.264024860835423&lon=-99.92134094238281&lat=43.99330848969143&incd&acon&dstb&dstr&obst&schd&road-cond&cams&rwis
https://travel.dot.nd.gov/?bbox=-107.161,45.025,-92.706,49.404&layers=cameras,closed-blocked,event-orange,incident-red,informational-grey,roads,travelalerts,warning-blue,warning-yellow,workzones
https://www.nmroads.com/mapIndex.html?
https://goky.ky.gov/
https://www.mdt.mt.gov/travinfo/weather/rwis.aspx
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model for congestion and speed detection. They build their own video dataset using an IP-based 

camera. They also compared the edge and cloud schemes with the hybrid scheme (edge + cloud) and 

found that under good weather condition, the performance of the edge scheme is better than that of 

the cloud scheme while under bad weather condition (i.e., snowy), the performance of the cloud 

scheme is better than that of edge scheme. 

Considerable development efforts have been made into autonomous driving using sensing technology 

and computer vision to find road obstacles and analyze the current traffic flow and surrounding 

conditions. Many review papers have been developed, for instance, (Chen et al., 2020) evaluated the 

technologies used to advance autonomous driving, including CNN, SSD, R-SNN, R-FCN and so on. The 

review paper identified that recurrent neural network (RNN) could be replaced by long-short term 

memory (LSTM) in terms of autonomous driving scenes because it could bring more efficiency. The 

authors tackled the existing works of these methods and concluded selected approaches to point their 

strengths and gaps. This study highlighted that since autonomous driving is fairly new to society, it is 

important to improve the weaknesses of scientific methods to help them become a safer option. Some 

studies focus on enhancing 3D object detection. Peng et al. (Peng et al., 2020) introduced a lightweight 

Instance-Depth-Aware (IDA) 3D Detection to approaching object detection in autonomous driving which 

accurately predicted the depth of the 3D bounding box's center by instance-depth awareness. Their 

method focused on objects and directly performs the instance depth regression and paid more attention 

on far-away objects by disparity adaptation and matching cost reweighting.  

One of the vital application areas in smart transportation is accident detection. Ijjina  et al. (Ijjina et al., 

2019) developed a neoteric framework for detection of road accidents using road-traffic CCTV 

surveillance footage. This work was evaluated on vehicular collision footage from different geographical 

regions under various ambient conditions such as harsh sunlight, low visibility, daylight hours, snow and 

night hours. The dataset includes accidents in various ambient conditions such as harsh sunlight, 

daylight hours, snow and night hours. All videos were compiled from YouTube and were around 20 

seconds. Their proposed framework was able to detect accidents correctly at a 71% detection rate with 

0.53% false alarm rate on the accident videos. Another interesting research (Ghosh et al., 2017) used 

eye blink detection system based on object tracking and machine learning to alert drivers with high 

efficiency. Authors used real life dataset of drivers when they are commuting to a certain destination. 

This system had an efficiency of 80%, which means it could detect about 8 eye blinks in 10 actual blinks. 

Various studies have also been conducted on parking occupancy detection using computer vision. 

Traditional approaches for parking occupancy detection include background subtraction and hand-
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crafted feature (e.g., edges, color, texture) extraction (Acharya et al., 2018). Single shot detector (SSD) 

(Liu et al., 2016), You Look Only Once (YOLO) (Redmon and Farhadi, 2018) and its subsequent versions, 

and CNN-based frameworks (Krizhevsky et al., 2017) have achieved state-of-the-art accuracies in image 

classification and object detection. For instance, Acharya and Yan (Acharya et al., 2018) used deep 

Convolutional Neural Networks (CNNs) trained from public datasets (PKLot) and a binary Support Vector 

Machine (SVM) classifier to achieve outdoor parking occupancy detection. The detection accuracies of 

the model are reported to be 99.7% and 96.7% for a public dataset and for a new dataset generated by 

the authors. Amato et al. (Amato et al., 2016) developed a solution for visual parking space occupancy 

detection using a deep CNN model robust to light condition changes, presence of shadows, and partial 

occlusions. The authors tested two CNN architectures, mAlexNet and mLeNet, based on (Krizhevsky et 

al., 2017) and (LeCun et al., 1998) and reported an overall accuracy 82.9% on CNRPark, and 90.4% on 

PKLot dataset using mAlexNet. Bulan et al. (Bulan et al., 2013) presented a video-based real-time on-

street parking occupancy detection system using background subtraction, motion detection, and 

occlusion detection. To eliminate unreliable frames and regions for vehicle detection, they applied 

occlusion detection based on the position of a foreground blob with respect to a parking region. The 

parking occupancy detection method performs in real time with a 91% average detection accuracy for 

each camera. The authors stated that the video-based approach could replace the in-ground sensors  

since the former has a higher detection accuracy than that of in-ground sensors in San Francisco.  

A natural value-added option to on-street parking occupancy detection is to perform illegal parking 

detection simultaneously. For example, Bulan et al. (Bulan et al., 2013) integrated parking angle 

violation detection, parking boundary violation detection, and exclusion zone violation detection, into 

their parking occupancy detection model. Other than fixed traffic or surveillance cameras, Gkolias and 

Vlahogianni (Gkolias and Vlahogianni, 2018a) developed data science models to detect empty on-street 

parking spaces in urban networks based on in-vehicle cameras. Ranjan et al. (Ranjan et al., 2019) 

introduced StreetHAWK that leverages the rear camera of a dashboard mounted smartphone to identify 

potential parking violations. Other value-added features can be considered for adoption, such as bus or 

bike lane occupancy and violation detection. In the literature, most studies focus on parking lot usage 

detection (Acharya et al., 2018; Amato et al., 2016; Lee et al., 2005; Màrmol and Sevillano, 2016; Wu et 

al., 2007; Yin et al., 2019) but illegal parking detection is mostly needed on-street. Only a few studies 

(Bulan et al., 2013; Gkolias and Vlahogianni, 2018a) have tested for on-street parking occupancy of curb 

lanes. Previous studies have often relied on moderate to high resolution videos (over 480p) and 

consecutive video frames (>1 frame per second (fps)) (Chen and Yeo, 2019; Lee et al., 2009; Màrmol and 

Sevillano, 2016; Ranjan et al., 2019; Xie et al., 2017c) and many models use vehicle tracking (Màrmol 

and Sevillano, 2016) (Chen and Yeo, 2019; Tang et al., 2020; Xie et al., 2017c) for event detection. Since 
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public traffic surveillance cameras suffer from low image resolution and frame rate, an effective solution 

that accounts for this feature is needed. 

Besides vehicle detection, enhancing the safety of vulnerable road users (VRUs) is also of critical 

importance to achieving the objectives of USDOT's National Roadway Safety Strategy (NRSS), and vision 

zero goals. According to data from the National Highway Traffic Safety Administration (NHTSA), in 2020 

there were 10,626 traffic fatalities in the United States at roadway intersections, including 1,674 

pedestrian and 355 bicyclist fatalities. These fatalities at intersections represent 27% of the total of 

38,824 road traffic deaths recorded in 2020. Previous detection methods for VRUs, especially 

pedestrians, mainly using infrared sensors, radar sensors, thermal imaging, microwave sensors and so 

on. Figure 6 shows the evolution of pedestrian detection technologies and vision-based detection 

system showed an increasing trend in recent years. More details about pedestrian detection 

deployment can be found in the interactive timeline and map visualizations developed by the C2SMART 

research team for USDOT Intelligent Transportation Systems Joint Program Office (ITSJPO) at 

https://www.itskrs.its.dot.gov/decision-support. Besides the general VRU detection application, some 

studies also extended the use case to social distancing measuring or pedestrian intention predictions 

(Wang et al., 2022; Zuo et al., 2021). Zuo et al. (Zuo et al., 2021) developed a reference-free video-to-

real distance approximation-based urban social distancing analytics. Their method measured pedestrian 

distancing and density at crosswalks and sidewalks in complex urban environments to quantify social 

distancing to better understand the new norm of urban mobility amid COVID-19 pandemic. Wang et al. 

(Wang et al., 2022) added a Temporal Attention (TA) to the encoding and decoding layers of the 

Generative Adversarial Network (GAN) to improve pedestrian intention prediction. Such predictions can 

be further incorporated into various applications such as jaywalker detection and cooperative 

perception. Review of the literature also revealed that only a few studies centered on detecting people 

with mobility aids. Kollmitz et al. (Kollmitz et al., 2019) collected of over 17,000 annotated images from a 

hospital in Frankfurt, Germany and developed a model to detect people with mobility aids to benefit 

robots operating in hospitals. Their dataset contained five classes, including pedestrian, person in 

wheelchair, pedestrian pushing a person in a wheelchair, person using crutches, and person using a 

walking frame. The study only focused on indoor environment and its performance on outdoor 

environments such as crosswalks is unknown.  

https://www.itskrs.its.dot.gov/decision-support
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 Figure 6. Timeline of selected pedestrian detection technology deployments (Source: C2SMART & 

ITSJPO) 

2.2.1 Work Zone Detection Using Computer Vision 

The literature review also revealed that progress has been made in computer vision, but mainly on 

pedestrians and vehicles. Computer vision for other use cases, such as work zone detection, is still very 

limited. Most existing studies focus on off-street work zones or a single type of work zone object (e.g., 

traffic cones). In addition, almost all of the existing literature emphasized that the main challenge for 

work zone detection is the scarcity of publicly available, large-scale, domain-specific, annotated dataset 

of work zone imagery.  

For example, Nath and Behzadan (Nath and Behzadan, 2020) used a CNN model that laid out a 

framework for detecting the most common types of off-street construction objects, namely, buildings, 

equipment, and workers (Figure 7 (a)). They recognized the lack of publicly available annotated work 

zone imagery dataset and introduced a systematic approach to visual data collection through 

crowdsourcing and web-mining and annotating the dataset for AI model training to overcome the 

limitation. The results showed that models perform best when trained on combined (crowdsourced and 

web-mined) data. They collected 3,500 images with 11,500 work zone objects and tested both YOLO-v2 

and -v3. The study found the best-performing model is YOLO-v3, which had a 78.2% mAP.  
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Duan et al. (Duan et al., 2022) also stated that the lack of large-scale, open-source dataset for the 

construction industry limited the development of computer vision algorithms as they are often data-

hungry. This study developed a new large-scale work zone image dataset, Site Object Detection dAtaset 

(SODA), which was collected from the real construction site and contained 15 types of object classes 

categorized by workers, materials, machines, and layout. A total of 19,846 images including 286,201 

objects were mined and annotated. Their model achieved a maximum mAP of 81.47%. They also 

suggested field data acquisition could adopt methods such as using drones, handheld monocular camera 

shooting, and construction site monitoring video. The limitation of this dataset is it is mainly for off-

street work zones and may not be suitable for detecting work zones that occur on the roadways.  

A recent study conducted by Katsamenis et al. (Katsamenis et al., 2023) used Yolov5 for traffic cone 

detection using a training dataset of 500 traffic cones images (Figure 7 (b)). The data used in this paper 

was collected and manually annotated under the framework of the H2020 HERON project. The results 

showed that the proposed computer vision model could achieve a 91% accuracy in detecting traffic 

cones. However, work zones, especially urban work zones often composed by multiple types of 

construction objects and have no standard work zone set up, single object type detection may not be as 

effective as expected in such cases. This demands the needs of building and sharing a comprehensive 

publicly available, domain-specific, annotated dataset of urban work zone (on urban streets and 

sidewalks) imagery. 

     
(a) Work zone detection for off-street sites (Nath and Behzadan, 2020)                   (b) traffic cone 

detection (Katsamenis et al., 2023) 

 Figure 7. Examples of work zone detection research 
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Additionally, we found most of the existing studies rely on specific cameras while a few of them utilized 

existing intelligent transportation systems (ITS) infrastructures such as closed-circuit television (CCTV) 

cameras (Ijjina et al., 2019; Zinchenko et al., 2020; Zuo et al., 2021).  

Table 2 synthesizes some of the most recent literature on smart transportation applications using 

computer vision. While not exhaustive, it provides a representative sample of recent research effort.
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 Table 2 Summary of recent literature on smart transportation apps using computer vision. 

Study Year Application(s) Goal Method Training 
data 
publicly 
available? 

(Sajib and 
Bhuiyan, 
2019)  

2019 Traffic monitoring, 
Traffic count 

Propose a vision-based traffic 
monitoring system detect the 
number of vehicles that 
monitors the density of the 
roads. 

Haar feature 
based 
Adaboost 
classifier and 
virtual 
detection lines 
(VDL) 

No 

(Liu et al., 
2021)  

2021 Traffic monitoring (speed 
estimation & congestion 
detection) 

Propose a two-tier edge 
computing based model for 
congestion and speed 
detection 

Gaussian 
Mixture 
Model and 
Global 
Foreground 
Detection 

No 

(Fachrie, 
2020)  

2020 Traffic counting Aim to create a simple vehicle 
counting system to help 
human in classify and 
counting the vehicles that 
cross the street.  

YOLOv3 & 
counting using 
coordinates or 
location of the 
vehicles 

Yes 

(Kousar 
Nikhath et 
al., 2021) 

2020 Traffic counting Develop a video-based system 
that can be used to count the 
road traffic, and it does not 
disturb traffic flow 

Background 
extraction 

Yes 

(Leroux et 
al., 2022) 

2022 Traffic Counting Develop small, location-
specific object detection 
models for traffic counting 
without needing manual data 
labeling 

location 
specific models 

Yes 

(Zinchenko 
et al., 2020)  

2020 Traffic counting Incorporate an intelligent 
traffic light controlling system 
using an algorithm that 
consumes real data from 
closed-circuit television 
(CCTV) cameras 

Neural 
network-based 
models 

Yes 

(Khan et al., 
2020)  

2020 Pedestrian detection Develop an accurate 
computer vision-based system 
to track and count passengers 
for both indoor and outdoor 
scenarios.  

SVM classifier 
and 
histograms of 
orientated 
gradient 
descriptor 

Yes 
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(Zuo et al., 
2021) 

2021 Pedestrian 
detection/Social 
distancing 

Measure pedestrian 
distancing and density to 
quantify social distancing to 
better understand the new 
norm of urban mobility amid 
the pandemic 

Reference-free 
distance 
measure 
algorithm & 
YOLOv3 

No 

(Wang et 
al., 2022) 

2022 Pedestrian intension 
estimation 

Add a Temporal Attention to 
the encoding and decoding 
layers of the Generative 
Adversarial Network to 
improve pedestrian intention 
prediction 

Generative 
Adversarial 
Network based 
on Temporal 
Attention  

Yes 

(Kollmitz et 
al., 2019)  

2019 People with disabilities Detect people with mobility 
aids to benefit robots 
operating in indoor 
environment such as 
hospitals. 

Deep 
convolutional 
neural 
network (CNN) 

Yes 

(Gao et al., 
2022) 

2022 Parking 
management/Illegal 
parking 

Develop a computer vision–
based data acquisition and 
analytics approach for curb 
lane monitoring and illegal 
parking impact assessment 

YOLOv3 & 
Mask R-CNN 

Yes 

(Gkolias and 
Vlahogianni, 
2018b) 

2018 Parking management Develop data science models 
for the detection of empty on-
street parking spaces in urban 
road networks based on data 
provided by in vehicle 
cameras 

CNN Yes 

(Nath and 
Behzadan, 
2020) 

2020 Work Zone Detection 
(off-street) 

Detect construction objects at 
off-street construction sites 

YOLOv2/v3 Yes 

(Duan et al., 
2022) 

2022 Work Zone Detection 
(off-street) 

Develop a large-scale off-
street construction site image 
dataset 

YOLOv3/v4 Yes 

(Katsamenis 
et al., 2023) 

2022 Work Zone Detection 
(Traffic cone only) 

Detect construction buildings, 
equipment, and workers 

YOLOv5 Yes 

(Kanchana 
et al., 2021) 

2021 Autonomous driving Evaluate the technologies 
used to advance autonomous 
driving, including CNN, SSD, R-
SNN, and R-FCN 

CNN Yes 

(Peng et al., 
2020) 

2020 Autonomous driving Introduces Instance-Depth-
Aware (IDA) 3D Detection as 
to approaching object 
detection in autonomous 
driving which accurately 
predicts the depth of the 3D 

IDA 3D 
Detection 

Yes 
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bounding box's center by 
instance-depth awareness 

(Chen et al., 
2020) 

2020 Autonomous driving Review and develop advanced 
technologies for the visual 
sensing system of 
autonomous vehicles from 
standard computer vision to 
event-based neuromorphic 
vision 

CNN & 
Neuromorphic-
vision 
algorithms 

Yes 

(Ijjina et al., 
2019) 

2019 Accident Detection Develop a neoteric framework 
for detection of road 
accidents using road-traffic 
CCTV surveillance footage 

Mask RCNN No 

(Yan et al., 
2020) 

2020 Accident detection Detection of workers and 
heavy vehicles, three-
dimensional (3D) bounding 
box reconstruction, depth and 
range estimation in the 
monocular 2D vision, and 3D 
spatial relationship 
recognition 

CNN Yes (for 
COCO) No 
(for KITTI) 

(Ghosh et 
al., 2017) 

2017 Accident detection Develop an eye blink 
detection based alert system  

Eye blink 
detection 

No 

(Arshad et 
al., 2019) 

2019 Flood 
management/monitoring 

Present a systematic review of 
the literature regarding 
computer vision applications 
in flood monitoring and 
mapping 

Artificial 
Neural 
Networks and 
so on 

Yes 
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2.2.2 Safety Analysis  

In this project, we aim to generate a safety risk index utilizing the data extracted using computer vision 

techniques from in-vehicle cameras in CAVs. Safety risk of urban traffic is complex that has many 

different ways to estimate. There are two key elements of the estimation: variable selection and data 

fusion method. 

Variable selection  

Regarding to variable selection, crashes, near misses, traffic facilities, traffic characteristics, 

demographic information, land use and other variables were found in the previous literature.  Jiang et 

al. (2020) proposed safe route mapping model that integrates crash and conflict risk to score the safety 

of roadways. He et al. (2021); Santhanavanich et al. (2020) used crash-based kernel density estimation 

method to find the high safety risk locations. Abdelrahman et al. (2019) developed per segment risk 

indexing using crashes and near misses.  

Vehicle Miles Traveled (VMT) serves as an exposure variable, reflecting the volume of motor vehicle 

traffic. Xie et al. (2017a) identified VMT as key traffic exposure indicator contributing to pedestrian-

vehicle collisions in Manhattan. Further supporting this, a positive correlation was found between VMT 

and the number of accidents Yang et al. (2019). In addition to the exposure indicator, characteristics of 

the road network, such as intersection density, number of intersections, and road length, also 

significantly influence road safety risk. Huang et al. (2018) utilized a geographically weighted model to 

uncover that greater four-way intersection density within block groups typically correspond with higher 

collision rates. Moreover, Ding and Sze (2022) found a positive correlation between intersection density 

and bicycle-vehicle collisions, suggesting that high intersection density might adversely affect road 

safety. Aligning with these findings, Silva et al. (2020) argued that road length stands out as a critical 

factor when modeling traffic collision frequency. 

As it pertains to land use, Yang et al. (2019) discovered that a higher proportion of commercial areas 

positively correlates with the total number of collisions occurring throughout the day. Conversely, a 

greater proportion of park areas tends to diminish the frequency of collisions. This indicates that land 

use patterns significantly influence traffic safety. Expanding on this, Lym and Chen (2020) found that 

commercial land use tend to elevate the risk of Property Damage Only (PDO) and Injury-related 

accidents. Further reinforcing these findings, studies focusing on risks associated with cycling (Xie et al., 

2021) and pedestrian activities (Xie et al., 2017a) demonstrated that commercial areas exert a larger 
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positive influence on accident rates compared to other land use patterns. The implication is that the 

characteristics of land use significantly contribute to the variation in accident rates. 

Data fusion 

Data fusion technology is a critical component in effectively integrating and weighting various data 

sources, thereby providing a comprehensive understanding of traffic safety risks. Several techniques, 

such as the entropy weight method, divergence method, and fuzzy comprehensive evaluation method, 

have been proposed in past research to amalgamate different road risk-related variables into a singular 

index that accurately represents traffic safety. 

The entropy weight method (Huang et al., 2021) is an approach that offers a systematic way of assigning 

weights based on the inherent variability of data. The method gets its name from the concept of entropy 

in information theory, where entropy is a measure of the uncertainty or randomness of information. If a 

variable has higher information entropy, its weight is larger. The primary advantage of this method is its 

objectivity, thus avoiding the pitfalls of subjectivity involved in manually defining weights. However, a 

significant drawback is its inability to consider the correlation between indicators, making it more 

suitable for scenarios where variables exhibit weak interrelationships. 

On the other hand, the scatter degree method (Huang et al., 2021)  assigns weight coefficients that 

reflect the maximum overall difference between the objects evaluated. When applying in safety risk 

evaluation, this approach is advantageous as it optimizes the variance between data points, enhancing 

the identification of distinct road safety risk factors. However, a potential limitation is that it might 

overlook similarities or patterns that could be meaningful in the risk analysis. 

Jiang et al. (2020) introduced a fuzzy logic-based method to unify single indicators. The strength of this 

method lies in its tolerance for imprecise data and its ability to model complex non-linear relationships 

through flexible fuzzy rules. This flexibility makes it particularly useful for handling intricate and vague 

real-world data scenarios often encountered in traffic safety research. However, a disadvantage of this 

method is the potential subjectivity introduced in designing fuzzy rules and weights, which may result in 

deviations in the comprehensive evaluation results. 
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Section 3 Urban Work Zone Detection 

The occurrence of work zone activities within highway networks and urban roadways can induce 

substantial traffic interruptions. These operational disruptions often result in roadway capacity 

reduction (i.e., by closing down one or more lanes) that might lead to severe congestion and roadway 

crashes. On the one hand, work zones have contributed to approximately ten percent of highway 

congestion in the U.S., resulting in an estimated annual loss of $700 million in fuel alone (Edara et al., 

2013), while exacerbating the negative environmental effects of vehicle emissions and increasing safety 

risks (Edara et al., 2017). For example, one study found that the crash rate increased by 24.4% under 

work zone conditions compared to non-work zone conditions (Ozturk et al., 2014). On the other hand, 

while offline data sources such as work zone permit data may be available, the majority of U.S. cities 

have yet to establish a real-time approach to monitor actual activities during operational periods of 

work zones throughout the road network. 

Given these concerns, real-time work zone detection becomes crucial. Knowing the location, duration, 

size of the work zones in real-time can provide vital insights into their impact on traffic flow and safety 

and help decision makers strategically allocate resources through the Transportation Management 

System (TMS).  

One viable approach to detecting work zones in real-time is using vision-based detection by means of 

existing traffic cameras. While these traffic cameras are extensively used for pedestrian and vehicle 

detection, their application to road work zone detection, especially in complex urban settings, remains 

limited. Urban work zones are uniquely challenging due to pedestrian and vehicular activities, complex 

surroundings, and lack of standardized setups. 

As mentioned in Section 2, the majority of existing studies using computer vision for work zones focus 

on off-street sites that might employ different types of equipment than those seen in roadside work 

zones, or they concentrate solely on detecting a single type of work zone component (e.g., traffic cones) 

(Katsamenis et al., 2022). Moreover, the mere recognition of work zone equipment does not necessarily 

confirm the presence of a work zone, as such equipment can sometimes serve other purposes, including 

regulating traffic (e.g., using barrels to separate traffic lanes). Consequently, there is a need for a new 

methodology that identifies work zone scenes in their entirety rather than simply detecting individual 

pieces of some work zone equipment.  

Additionally, most of the existing Artificial Intelligence (AI) applications adopt model-centric approaches 

wherein data collection is perceived as a one-time event to improve the model architecture to enhance 
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its performance (Motamedi et al., 2021). However, given the inherent scarcity of open-source training 

samples for work zone detection, the current limitation in this domain is the lack of data rather than 

shortcomings in the model. This constrains the development of computer vision algorithms for this 

specific problem, which typically require substantial amounts of data. 

In this project, we introduce a deep learning-based framework to effectively recognize urban work zone 

scenes and their sizes. The main contributions of this research are summarized as follows: 

● We propose a data-centric training approach designed to iteratively improve the performance of 

work zone object detection by augmenting a customized training dataset fused from multiple 

data sources to overcome the sparsity of annotated real-world work zone images. These sources 

include 2,600 images with 15,000 work zone object labels from traffic cameras, web-mined 

images, and synthetic work zone images generated through a 3D simulator. 

● We implemented a topology-based inference method using XGBoost to automatically identify 

work zone scenes. This innovative approach is designed to deal with the complexities of work 

zone scene detection caused by the fact that recognizing individual or certain combination of 

work zone components alone (e.g., a traffic cone behind a car) may not necessarily represent a 

true work zone. 

● We developed a reference-free work zone size estimation method, which utilizes the standard 

heights of common work zone equipment, to provide a generalized real-pixel distance rate 

method.  

3.1 Framework for Urban Work Zone Detection and Sizing 

The emerging field of Data-Centric AI is anticipated to introduce techniques for dataset optimization, 

thus enabling detection algorithms to be effectively trained even with relatively small datasets 

(Motamedi et al., 2021). In this project, we propose a data-centric framework for urban work zone 

detection and sizing which contains three modules: 1) a data-centric training that systematically 

augments training datasets with the goal of enhancing the accuracy of the work zone detection model, 

2) a topology-based work zone scene inference that can identify work zones by understanding the 

positional relationships and connections among detected work zone objects (e.g., cones placed adjacent 

to a line of fences), and 3) a reference-free estimation for work zone size. We describe each part of the 

proposed detection methodology in the following sections. Figure 8 shows the working flow of the 

proposed method.  
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 Figure 8. Flowchart for urban work zone detection and sizing. 

Data-Centric Training for Work Zone Object Detection: We begin with collecting a customized dataset 

of 2,600 work zone images with about 15,000 labels from diverse sources including CCTVs, web-mined 

images, and a 3D simulator, offering a wide array of work zone scenarios (Figure 9). This model is 

designed to identify several key work zone objects, such as traffic cones, construction workers and 

vehicles. Web-mined and 3D synthetic images primarily serve to fill the gaps in certain subcategories of 

the training data, which may be sparse in the CCTV images, yet their detection accuracy is vital for the 

model. For instance, web-mining is a good supplemental source for augmenting training images for 

construction vehicles. The quality of the data was incrementally improved by correcting label errors and 

pruning noisy labels based on data quality objectives. 

Topology-Based Work Zone Scene Inference: Once work zone objects are identified, their topological 

arrangement is analyzed. We calculate a topology complexity score based on the positional relationships 

and connections among these objects. The score serves as an indicator of whether the scene represents 

an organized work zone or a random accumulation of work zone objects for non-work zone purposes. 

The score is then fed into an XGBoost classifier, which is trained on ground truth work zone scene data. 

Reference-Free Work Zone Size Estimation: After the presence of a work zone is confirmed, an 

estimation algorithm is performed to approximate the size of the work zone. This is accomplished using 

a reference-free method, which utilizes the standard heights of common work zone equipment to 

establish a scale. With this scale, the distances and sizes of the work zone scene can be inferred, 

allowing for the estimation of the work zone's size. 
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Traffic Cameras Web-mining 3D Synthetic Images 

   

   

   

 Figure 9. Training data sources. 

3.1.1 Data-Centric Training Pipeline 

The key to work zone detection and sizing lies in accurately recognizing work zone-related objects. For 

the purposes of this study, we focus on seven key objects, including traffic cones, barricades, barrels, 

chain fences, construction vehicles, signs, and workers. The YOLOv8 model that integrates cutting-edge 

backbone and neck architectures with the mosaic augmentation method is used as it enhances both 

feature extraction and object detection, compared to previous YOLO versions (Jocher et al., 2023). Given 

the absence of a pre-trained YOLOv8 model tailored to our needs due to the lack of publicly available 

labeled roadway work zone data, we curated and manually labeled our own training set featuring work 

zone objects from the sources described in Figure 9. 
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Data-centric model training recognizes that quality data is key to achieving better model performance, 

especially when dealing with real-world scenarios that are diverse and often unpredictable. Consider the 

objective of data-centric training in a simplified manner. Assume that we have a model, defined by its 

parameters 𝜃, and a dataset 𝐷 = (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 is an instance (image in our case) and 𝑦𝑖 is the 

corresponding label. In the typical model-centric training, we want to find optimal parameters 𝜃∗ that 

minimize a loss function 𝐿, averaged over all instances in the dataset: 

𝜃∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝜽
𝟏

𝑵
∑ 𝑳(𝒚𝒊, 𝒇(𝒙𝒊; 𝜽)),   𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊 𝒊𝒏 𝑫                                        (1) 

Where 𝑓 (𝑥𝑖; 𝜃) is the output of the model given instance 𝑥𝑖 and model parameters 𝜃. 

In contrast, for the data-centric training, we recognize that our dataset 𝐷 itself might be sub-optimal, 

due to label errors or lack of image diversity. We hence introduce a notion of "dataset quality" 𝑞(𝐷), 

which outlines how good our data is. The goal then becomes to optimize not just the model parameters 

𝜃 but also the dataset 𝐷 itself: 

(𝜃∗, 𝐷∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃,𝐷
1

𝑁
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖; 𝜃)) − 𝜆∗𝑞(𝐷),   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑖𝑛 𝐷                       (2) 

Here, 𝜆 is a regularization parameter balancing model loss and data quality. Enhancing dataset 𝐷 might 

include correcting labeling errors, ensuring data representation, and introducing edge cases for model 

generalization.  

In this study, we refined the dataset based on model performance, adding data and correcting/pruning 

label errors specifically for subclasses falling short of desired accuracy. The data-centric training pipeline 

is illustrated in Figure 10. 
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 Figure 10. Data-Centric training pipeline. 

A customized YOLOv8 model utilized the training dataset generated is used as the object detection 

model. YOLOv8 (Jocher et al., 2023) is the latest in the YOLO series of real-time object detectors, 

provides outstanding performance in terms of speed and accuracy, making it ideal for a variety of object 

detection tasks. It employs advanced backbone and neck architectures for improved feature extraction 

and object detection and features an anchor-free split detection head for enhanced accuracy. 

Furthermore, YOLOv8 offers an optimal balance between accuracy and speed, and provides a range of 

pre-trained models for various tasks such as object detection, instance segmentation, pose/keypoints 

detection, and classification. When compared to YOLOv5, YOLOv8 is faster, more accurate, and provides 

a more comprehensive framework for developers. 

 

 Figure 11. YOLOv8 (R=Reduce layer, T=Top-down layer, B=Bottom-up layer, C=Concat, U=Upsample, 

D=Downsample, O=Out layer) 
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Initially, 11 work zone-related objects were considered for training and testing (refer to Table 3). 

However, following an evaluation of the label distribution based on object type (as shown in Figure 12) 

and examples of false positives (Figure 13), changes were made to the work zone object classes. 

Specifically, 1) the ' Manhole Guard Rail' class was removed due to insufficient training data, 2) 'Steam 

Vent', 'Fence', 'Trench Cover', and 'Delineator' classes were removed due to high false positive rates, 

and 3) a 'Chain Fence' class was added, as it was identified as a common work zone object in NYC. 

 Table 3 Work zone objects. 

I
D 

Object Type Example ID Object Type Example 

1 Traffic cones 

 

7 Construction 
Workers 

 

2 Barrels/Drums 

 

8 Construction 
Vehicles 

 

3 Barrier & 
Barricades 

  

9 Work Zone 
Signs 

 

4 Fence 

  

10 Trench 
Covers 

 

5 Delineators 
and 
Channelizer 

   

11 Manhole 
Guard Rail 

 

6 Stream Vent 
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 Figure 12. Label distribution by object type 

 

 Figure 13. False positive example: Incorrect steam vent detection 

3.1.2 Topology-based Work Zone Inference using XGBoost 

Not all scenes containing work zone objects are actual work zones, especially in urban areas. Therefore, 

a work zone scene identification model is needed. In this project, we introduced an innovative topology-

based work zone inference using a supervised learning classifier, XGBoost, to reliably identify work zone 

scenes under real-world conditions.  

Firstly, we manually collected ground truth data based on CCTV cameras from real-world work zone and 

non-work zone scenes that contains work zone objects. Table 4 provides an example of the information 

collected. 

26.4%

3.8%

4.3%

8.3%

19.0%

24.4%

1.6%

1.4%

1.4%

1.1%

0.0%

8.2%

Barricade

Worker

Construction Vehicle

Delineator

Cone

Barrel

Trench Cover

Sign

Wooden Fence

Vent

Guard Rail

Chain Fence
#Labels Per Class
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 Table 4 Example of ground truth information  

collected from real-world work zone and non-work zone scenes that contains work zone 

objects. 

 ID Cones  Barrels Barriers Fences Workers Const. 

Vehs. 

Signs Work 

Zone? 

In travel 

lane? 

In Parking 

Lane?  

1  4      No No No 

2   22 6    Yes No Yes 

3   10 27 2 1  Yes No Yes 

4 30    4 2 1 Yes Yes No 

5 1       Yes Yes No 

6 1       No No No 

7 2 1      Yes No Yes 

8   4     No No Yes 

9 1 2      No No No 

10  30     4 Yes Yes No 

Second, instead of relying solely on the presence of work zone objects, this methodology also considers 

their arrangement and inter-connectedness within the work zone. A topology complexity score is 

derived from these detected objects, illustrating their layout complexity. Work zone objects are 

clustered using a density-based clustering algorithm, DBSCAN (Ester et al., 1996). Any cluster with fewer 

than three items is considered as noise (i.e., non-work zone). The topology complexity score views the 

detected work zone as a graph. From any random vertex, the algorithm searches for the nearest vertex 

with a degree less than two, then adds an edge between them. This process is repeated until every 

vertex in the graph is connected, and no vertex has a degree greater than two. The complexity is 

measured by the features of the generated graph, including the number of edge cross points, the ratio 

of cycles to chordless cycles, and the length distribution of edges.  

These measurements serve as input variables for a supervised learning classifier, which identifies 

whether a particular scene represents a work zone or not. For the selection of the classifier, we 

prioritized inference speed, training speed, and accuracy. Since Tree-based models continue to 

outperform deep learning on medium tabular data (Grinsztajn et al., 2022) and our data is tabular with a 

limited sample size, we decided to apply XGBoost, which is a gradient-boosting algorithm that is well-

known for its efficiency and performance. The detailed algorithm is provided in Algorithm 1. 
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This classifier achieved a model accuracy of 91-94% on test data. In addition, feature importance test 

showed barrier, cones, barrels and construction vehicles are the most important features for identifying 

a true work zone. 

Algorithm 1 Topology Complexity Score 

Require: 
1: Initialize a list of qualified clusters 𝐶𝑞  from the results of DBSCAN consists with 𝐶. 

2: Initialize an empty Graph 𝐺(𝑉, 𝐸). 
3: Initialize a list of available vertices 𝑉𝑎 consists with all vertices 𝑣𝑎  in 𝐺 having a degree less than or 

equal to 1. 
4: 𝑁 is the total number of vertices in 𝐶, 𝑛 is the total number of vertices in 𝐺. 
5: Original Vertex: 𝑣0; Destination Vertex: 𝑣𝑑; Number of cycles: 𝑁𝑐 ; Number of chordless cycles: 𝑁𝑐ℎ; 

Number of crossing edges: 𝑁𝑐𝑐  
6: 
7: for each cluster 𝐶 in  𝐶𝑞  do 

8:       for each vertex 𝑣 in 𝐶 do 
9:            while 𝑛 < 𝑁 do 
10:                if 𝐺 = ∅ then 
11:                    𝑣0 ← 𝑣 
12:                else if Degree of 𝑣𝑑 ¡ 2 then 
13:                    𝑣0 ← 𝑣𝑑 
14:                else 
15:                    𝑣0 ← ∀𝑣 ∈ 𝑉𝑎 
16:                end if 
17:                if 𝑉𝑎 has more than two vertices then 
18:                     Find the nearest 𝑣𝑎  and set it as 𝑣𝑑 
19:                     Add an edge between 𝑣0 and 𝑣𝑑 
20:                     Update 𝐺 and  𝑉𝑎 
21:                else if 𝑉𝑎 has only two vertices then 
22:                     Set the last 𝑣𝑎  other than 𝑣0 as 𝑣𝑑 
23:                     Add an edge between 𝑣0 and 𝑣𝑑 
24:                     Update 𝐺 and  𝑉𝑎 
25:                end if 
26:           end while 
27:           Calculate 𝑁𝑐 , 𝑁𝑐ℎ , 𝑁𝑐𝑐  and the length of edges in G, store these attributes. 
28:        end for 
29:        Find graph 𝐺𝑓 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑁𝑐

(𝐺) 

30:        Obtain topology scores from 𝐺𝑓 

31: end for 
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3.1.3 Reference-free Work Zone Size Estimation 

To overcome variance in camera positioning and perspective, we suggest a reference-free methodology 

for work zone size estimation, based on standard heights of common work zone equipment such as 

traffic cones. This method, initially proposed from our previous work (Zuo et al., 2021) for pedestrian 

detection, eliminates the need for a physical scale reference in the scene which usually requires on-site 

human investigators.  

The reference-free method divides the image into several hyper-planes, oriented perpendicularly to the 

horizontal plane and vanishing lines. Due to perspective effects, each hyper-plane exhibits a unique real-

to-pixel distance ratio (RP-rate) as the number of pixels corresponding to a given real-world length 

varies between hyper-planes. Next, we propose that each specific type of work zone equipment in the 

image stands perpendicular to the horizontal plane and maintains a uniform actual height ℎ𝑟. Figure 14 

provides an example illustrating the proposed area estimation method. 

 

 Figure 14. Proposed work zone size estimation method. 

Subsequently, the detected object (vertex) is ranked according to the RP rate, and one edge is then 

added to the adjunct vertices. Combining the final graph 𝐺𝑓 generated from Algorithm 1 and removing 

the duplicated edges, a set of sub-cycles are generated. The calculation of the real distance is considered 

as the integration of the product between RP-rate and pixel distance 𝛥𝑝 (Zuo et al., 2021). Similarly, the 

real area size of each chordless cycle can be formulated as the integration of the product between RP 

rate and the pixel area size 𝛥𝑠. Given that each cycle comprises at least three vertices, it's 
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straightforward to divide a cycle into sub-cycles between two neighboring vertices using a 

supplementary vertical line.  

A horizontal line is added from each vertex inside the generated work zone area, and then the area is 

separated into sub-region (SC1 to SC3 in Figure 14). Each sub-region is considered as many small 

rectangles, and the length of the rectangle is the real distance between the region's bounds, 𝑙, which 

can be calculated using the pixel distance multiplied by the RP rate. The rectangle width is calculated 

using the method introduced in (Zuo et al., 2021) due to the perspective effect. Thus, each sub-region 

can be calculated as a double integral that is written as: 

𝑨𝑺𝑪 = ∫
𝒃

𝒂
∫

𝒓𝒃

𝒓𝒂
𝒍𝒓𝒅𝒍𝒅𝒓                                                                    (3) 

where the 𝑎 and 𝑏 are the two vertices, 𝑙𝑎 and 𝑙𝑏 are the horizontal distance between the work zone 

bounds at vertex 𝑎 and 𝑏; 𝑟𝑎 and 𝑟𝑏 are the RP rates of vertex 𝑎 and 𝑏, which can be calculated as 

follow: 

𝑟𝑅𝑃
𝑖 =

ℎ𝑟

ℎ𝑝
𝑖                                                                                        (4) 

where ℎ𝑝
𝑖  is the pixel height of the detected equipment, and ℎ𝑟  is the real height of the equipment type. 

In this study, the height of a barrel, a cone and a barricade is assumed to be 37, 28, and 42 inches, 

respectively. 

3.2 Experiment and Results Analysis 

To prove the effectiveness of our proposed framework in urban work zone detection, we evaluated the 

detection model performance using precision-recall (PR) curve and Mean Average Precision (mAP) over 

IoU 0.5 (mAP@0.5) based on different training datasets. Then, we assessed the performance of the work 

zone scene identification and size estimation based on confusion matrix, accuracy and F1 score. 

3.2.1 Work zone object detection model performance 

Our training data primarily derives from a subset of the 900+ fixed CCTV traffic cameras in New York City 

(nyctmc.org), providing a variety of urban work zone images under different lighting, weather, and 

traffic conditions, although with relatively low resolution (i.e., 240p). Free stock images sourced from 

the web and synthetic images from a 3D simulator are also incorporated as supplement data sources in 

addition to the CCTV images. The free stock images provide high-resolution depictions of specific 

classes, such as construction workers or vehicles, while the 3D simulator generates synthetic work zone 

about:blank
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images from various angles and work zone setups under controlled conditions. This approach bridges 

gaps in areas where real-world data may be scarce. For instance, if there are few examples of night-time 

work zones in the actual data, these scenarios can be simulated in 3D. This ensures the data-centric 

training dataset comprehensively covers all possible scenarios, a crucial aspect for training a robust 

model. 

Among the 2,600 images collected and annotated, 890 CCTV, 850 stock, and 280 synthetic 3D images 

were used as the training data, and 580 CCTV images were used as the test/validation data. We used the 

YOLOv8 as our model, trained on four customized training models for 300 epochs, and evaluated on the 

test set. The four training models are: 1) Baseline Model uses original CCTV data without data-centric 

processing, 2) DC-CCTV uses CCTV data with data-centric processing, 3) DC-CCTV+Stock uses CCTV and 

free stock data with data-centric processing, and 4) DC-CCTV+Stock+3D uses CCTV, free stock and 

synthetic 3D data with data-centric processing. 

Figure 15 displays the PR curve resulting from different training model combinations. The performance, 

compared to the baseline, saw substantial improvement after implementing data-centric training in DC-

CCTV, which included data cleaning and re-labeling. Furthermore, when additional data sources were 

added to the training data pool, overall model performance increased due to data enhancement 

processing (Figure 15(c) and (d)), especially for subclass barricade, construction vehicle, work zone sign, 

and chain fence. Table 5 presents the mAP@0.5 scores for each work zone object class. Interestingly, a 

marginal decline is observed in performance for certain specific types upon data augmentation. A 

possible explanation is that the inclusion of stock and synthetic 3D images broadened the model's 

generalization thus reduced the risk of overfitting. 

 

 Figure 15. PR curve of model validation from baseline model and data-centric (DC) trained 

models using different training data sources combinations. 
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 Table 5 Training Performance Comparison. 

Detection Type 
Base Data-Centric Training 

CCTV CCTV CCTV+Stock CCTV+Stock+3D 
Barricade 0.572 0.644 0.680 0.725 

Worker 0.516 0.610 0.620 0.579 

Const. veh 0.272 0.675 0.700 0.737 

Cone 0.692 0.755 0.773 0.764 

Barrel 0.830 0.871 0.882 0.872 
Sign 0.424 0.750 0.727 0.799 

Chain fence 0.291 0.655 0.680 0.713 

ALL 0.514 0.708 0.723 0.741 
All values are Map@0.5 

3.2.2 Work zone scene identification model performance 

For XGBoost training, we selected 684 CCTV images, 399 containing unique work zones and 285 

containing work zone objects that do not constitute work zones (e.g., cones for lane control). Features 

like work zone shape, equipment count, number of crossing edges, the ratio of the cycle over the 

chordless cycle, and the number of edge outliers were manually labeled for model training. We tested 

the trained model on 853 CCTV images, with the confusion matrix presented in Table 6. 

 Table 6 Work Zone Scene Identification Confusion Matrix. 

 True WZ True Non-WZ 

Predicted WZ 15 5 

Predicted Non-WZ 7 826 

Upon analyzing the confusion matrix, it is noted that the accuracy of the model is 98.4%, whereas the F1 

score stands at 0.713. The discrepancy between these metrics can largely be attributed to the skewed 

distribution of the dataset, where the majority of data points are not associated with a work zone. 

Despite the inherent bias indicated in the F1 score, the results showcase practical applicability and offer 

satisfactory performance in real-world contexts. As demonstrated in Figure 16 and Figure 17, the work 

zone scene identification model functioned effectively under both daytime and nighttime conditions. It 

also performed well even under rainy conditions or when the camera views were blurred, as shown in 

the top two pictures of Figure 16. 
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 Figure 16. Example of detection output (daytime) 

 

 

 

 

 



 

 

 

 

  

36 Exploring Cost-effective Computer Vision Solutions for Smart 

Transportation Systems 

  

  

 Figure 17. Example of detection output (nighttime) 

3.2.3 Work zone size estimation model performance 

Figure 18 presents illustrative examples of work zone inference and area estimation. The first two 

images accurately identify work zones and their sizes, while the last two images avoid false positives 

despite the presence of work zone equipment. This demonstrates our model's accuracy even in complex 

environments. We evaluated our method using ten real-world images, manually estimating work zone 

sizes via satellite images. The method achieved accuracy within a range of 67.71% to 89.52%. 
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 Figure 18. Output of work zone detection, inference, and area estimation.  

The top two images highlight detected work zones in orange, with estimated sizes at the 

bottom right. The bottom images show correct detection of non-work zones containing work 

zone equipment. 

3.3 Limitations 

One limitation we found in the proposed detection model concerns distinguishing between a 

construction worker and a traffic enforcement agent. Although human judgement was applied when 

annotating the training data, since both of them often wear similar yellow or orange safety vests, the 

model sometimes recognizes traffic enforcement agents as construction workers. Given that 

construction workers have a relatively high importance score in the work zone scene identification 

model (i.e., a scene with a detected worker is highly likely to be a true work zone), this can potentially 

lead to the misclassification of work and non-work zones. Future work should explore solutions to this 

issue. 
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The area estimation methodology also carries certain limitations that necessitate further improvement.  

First, it functions optimally when the identified boundary equipment forms a closed enclosure. Further 

improvement is needed for work zones that utilize natural boundaries such as road curbs or walls in 

addition to typical enclosures like barrels or cones. Also, the reference-free estimation approach 

assumes uniform heights for each object type, which could introduce bias if actual sizes deviate. 

3.4 Conclusion 

The urban work zone application aims to address the challenges of automatically recognizing and sizing 

work zones in complex urban environments. The research team introduced a multi-facet framework that 

combines data-centric AI training, topological analysis, gradient boosting classification, and reference-

free size estimation, forming a comprehensive work zone detection toolkit. We developed a deep-

learning based work zone object detection model with a data-centric approach to iteratively enhance 

the model's performance by augmenting a custom training dataset collected from multiple sources, 

thereby overcoming the sparsity of annotated real-world work zone images. The training data is 

acquired from traffic cameras, mined from the web, and 3D-simulated work zone images. An innovative 

topology-based inference method is introduced, using XGBoost, for distinguishing true work zones from 

non-work operational zones with some work zone features. We also developed a reference-free work 

area size estimation method, which utilizes the standard heights of common construction equipment to 

provide a generalized real-pixel distance approximation.  

Our model's efficacy is demonstrated with an average mAP of 74.1% across all work zone classes, an 

accuracy of 98.4% for scene identification, and an accuracy of up to 89.52% for size estimation. This 

holistic approach enables real-time identification and size estimation of work zones with reasonable 

accuracy under complex urban settings. This can potentially facilitate the provision of more informed 

active work zone management, thereby improving safety and mobility in the presence of work zones. As 

the proposed approach was empirically validated using existing traffic camera infrastructure in NYC, it 

also shows its potential as a new mechanism for generating real-time work zone data remotely in a cost-

effective manner. We aim to combine the proposed approach with traffic and incident detection, as well 

as work zone permit database, to facilitate a more effective TMS in the future. 
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Section 4 Safety Risk Index Map 

4.1 Research and Development Framework 

According to the World Health Organization, approximately 1.35 million people die in road traffic crashes 

annually (WHO, 2022), making it the eighth leading cause of death worldwide. Furthermore, an additional 

20 to 50 million individuals suffer non-fatal injuries (ASIRT, 2022), often resulting in long-term disabilities. 

In densely populated urban areas like New York City, traffic safety concerns are exacerbated by the sheer 

volume of vehicles, pedestrians, and cyclists that share the streets (see Figure 19). With over 259 fatalities 

and 50,733 injuries reported in 2022 (CHEKPEDS, 2023), the city faces numerous challenges, including the 

high cost of accidents, the vulnerability of certain road users, and the impact of crashes on traffic 

congestion. Addressing these issues is of utmost importance for the well-being of the city's residents, 

commuters, and visitors. 

 

 

(a) The crash fatalities and injuries of New York City 

(2009-2022) 

(b) The locations of crash fatalities in New 

York City (10/2012-10/2022) 

Figure 19. The crash fatalities and injuries of the New York City 

Fortunately, a unified commitment to promoting safety for all is demonstrated at both federal and city 

levels. The Federal Highway Administration's (FHWA) Strategic Plan for 2022-2026 (FHWA, 2022) places 

traffic safety at the forefront of its goals, emphasizing five key components: Safety Design, Safety 

System, Safe Public, Safe Workers, and Critical Infrastructure Cybersecurity. This comprehensive 

approach highlights the need for innovative infrastructure solutions, data-driven methodologies, public 
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awareness, worker safety, and cybersecurity measures to address the multifaceted challenges of traffic 

safety. New York City's Vision Zero Plan (NYC Vision Zero, 2023), launched in 2014, is another key 

initiative that shares the objective of improving traffic safety. The plan aims to eliminate traffic-related 

fatalities and serious injuries by implementing a combination of enforcement, education, and 

engineering measures. Despite a nationwide rise in traffic fatalities, New York City defied the trend in 

2022 with a 6.6% reduction in overall traffic fatalities, and a 6.3% reduction in pedestrian fatalities, with 

Vision Zero in effect. These federal and city-level initiatives underscore the collective responsibility to 

prioritize traffic safety. 

Historical crash data plays a critical role in traffic safety analysis, as it provides a foundation for 

understanding the underlying factors contributing to accidents, identifying high-risk areas, and 

informing targeted interventions. However, despite its value, the rarity of crash, underreport issue, low 

location accuracy limits its usage in practice. With the advancement of computer vision technology, 

either via fixed infrastructures (e.g., CCTV cameras) or on-board devices (e.g., in-vehicle cameras), have 

emerged as a valuable tool in detecting near misses. These devices can capture real-time data on near-

miss incidents, providing a more comprehensive understanding of potential hazards and close calls that 

might not result in reported accidents. Analyzing near miss incidents effectively can offer insights that 

extend beyond individual incidents and can be vital to improving road safety and preventing serious, 

fatal, or expensive accidents. In addition to crash and near miss data, traffic volume, road attributes, 

road network features, transport facility distributions, land use, population and social demographics 

data are available in some cities and can provide supplemental information for traffic safety analysis.  

This study introduces a safety risk index based on data fusion, which consolidates multisource data and 

presents crash-related data through a highly interactive map application. This would be particularly 

useful in urban areas, such as New York City. To effectively organize the data, we employed a grid-based 

analysis that enables the integration of various factors affecting traffic safety. We first examined if a 

correlation exists between the crash records and near miss data collected via in-vehicle camera through 

computer vision technologies for both vehicle crashes and vulnerable road user (VRU) crashes (i.e., 

pedestrian and cyclist). The near miss data is provided by the industry partner Mobileye. Then, we 

modeled the crash frequency by considering several variables, including near misses, traffic volume, the 

number of intersections, road length, land use percentage, and population density. Utilizing machine 

learning methods such as XGBoost, we calculated the importance of each variable in relation to crash 

frequency. Based on the calculated importance scores, we generated a scaled safety risk index that 

incorporates crash frequency-related variables weighted by their respective importance. This risk index 

aims to provide a comprehensive measure of traffic safety risk in the urban environment, considering 
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the complex interplay of various factors. To make this valuable information accessible, we also 

developed a web-based safety map that visualizes the spatial distribution of the safety risk index, as well 

as other crash related information, such as speeding tickets or aggregated link speed, across the city.  

This data-driven, interactive map will allow stakeholders — including city planners, traffic engineers, and 

policymakers — to easily pinpoint high-risk areas requiring safety interventions and provides insights 

into key factors contributing to traffic safety issues. The research and development framework for the 

safety view map application can be seen in Figure 20. 

 

Figure 20. Research and development framework for the safety view map application 

 

4.2 Data Preparation 

The grid cell-based framework is a spatial analysis method that divides a geographical area into a grid of 

uniformly sized and shaped cells. Each cell represents an independent spatial unit used to collect, 

analyze, and display data. It has been used in various past studies (Gao et al., 2018; Xie et al., 2017a; Xie 

et al., 2017b) and is an effective method for addressing limitations in traditional spatial analysis 
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techniques, especially in traffic safety data analysis. Traditional methods often rely on Traffic Analysis 

Zones (TAZs) or census tracts, which can lead to issues when crashes occur at or near their boundaries. 

The grid cell-based framework offers several advantages, including improved resolution, as a finer grid 

allows for more precise identification of crash locations and helps identify problem areas or hotspots 

that might be overlooked in coarser spatial units. It also eliminates boundary issues by treating each cell 

as an independent unit that captures crash data within its boundaries. Grid cells are uniform in size and 

shape, allowing for more consistent comparisons and analysis, while also being easily scalable for 

analysts to adjust the resolution based on their needs and data availability. Furthermore, grid cells can 

be easily integrated with other spatial data sources, such as road networks, land use, and demographic 

information, providing additional context for safety analysis and helping identify potential contributing 

factors to crashes. Therefore, we chose grid cell-based framework to build the risk map. 

4.2.1 Grid Generation 

The selected study area for this analysis encompasses midtown Manhattan, specifically between 16th 

and 89th streets, where Mobileye near-miss data is covered. The study area was uniformly divided into 

a total of 2,343 cells, each measuring 300 ft by 300 ft (see Figure 21 (a)). This cell size was chosen 

because it closely aligns with the standard block width in Manhattan (264 ft) and the block length (900 

ft) is divisible by 300 ft . By using cells of 300 ft in length, location-specific features can be captured more 

accurately, allowing for a detailed street-by-street resolution that enhances risk analysis. After cleaning 

the cells that do not contain any datapoints (e.g., around lakes), the grid map with complete data is 

shown in Figure 21 (b).  
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(a) Grid 300ft*300ft (b) Grid 300ft*300ft with complete data 

Figure 21. Grid Generation in the Study Area 

4.2.2 Traffic Safety Related Data 

Near Misses 

The near-miss data is extracted from Mobileye collision warning events that were reported by fleet 

vehicles equipped with Mobileye after-market Advanced driver assistance systems (ADAS) solution. A 

Collision Warning (CW) event is an alert generated when a Mobileye-equipped vehicle is on a trajectory 

to collide with another vehicle, pedestrian, or bicyclist in its path. Mobileye's Collision Warning system is 

based on the estimated Time to Collision (TTC), a function of velocity and distance. There are three 

types of collision warnings (see Figure 22) reported: Forward Collision Warning (FCW), Pedestrian 

Collision Warning (PCW), and Bicyclist Collision Warning (BCW). FCW indicates a potential vehicle-to-

vehicle collision, detected up to 80 meters (260 feet) ahead and active for speeds between 1 km/h and 

200 km/h (124 mph). TTC threshold for FCW is triggered at 2.7 seconds. Both BCW and PCW involve 

potential collisions with bicyclists and pedestrians, respectively, detected up to 28 meters (90 feet) 

ahead and active for speeds between 1 km/h and 50 km/h (31 mph). The TTC threshold for these 

warnings is 2 seconds.  
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Figure 22. The concepts of FCW, BCW and PCW (Source: Mobileye) 

There are two types of Mobileye-equipped vehicles: 

● ME8: The first type is fleet vehicles with Mobileye 8 connect (ME8) technology. All collision 

warnings generated from the ME8 vehicles are collected.  

● OEM: The second type is consumer vehicles with Original Equipment Manufacturer (OEM) 

Mobileye technology. A subset of Collision Warnings was observed from OEM vehicles, and the 

default collection rate is set to gathering information from 1 driver per road segment per hour. 

ME8 Near-miss data used in this project covers the period from July 5, 2022, to December 31, 2022. 

OEM Near-miss data covers the period from August 16, 2022, to December 31, 2022. During this 

timeframe, a total of 59,277 (ME8) and 2559 (OEM) warnings were generated respectively (Figure 23), 

offering invaluable insights into potential collision events. In ME8 near-miss data, the vast majority of 

these warnings were FCW (58,210 events), representing 98.2% of all warnings. PCW and BCW comprised 

a smaller portion of the dataset, with 711 (1.2%) and 356 (0.6%) warnings respectively. Similarly, OEM 

near-miss data are consist of 91.8% FCW (2,005 events), 4.0% PCW (88 events) and 4.2% BCW (91 

events).  For each grid cell, the total count of the three collision warning types (FCW, PCW, and BCW) 

was calculated to represent the number of near misses. This calculation was performed using the Spatial 

Join tool in ArcGIS. 
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(a) ME8 Locations (b) OEM Locations 

  
(c) ME8 Histogram (d) OEM Histogram 

Figure 23. ME8 and OEM collision warning locations and distributions 

Crash Data 

The historical motor vehicle crash data for this analysis was obtained from Open NYC 

(https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95). To maintain 

consistency with the near-miss data, the crash data was filtered to include incidents occurring between 

July 5, 2022, and December 31, 2022. Furthermore, any crash data entries lacking coordinate information 

were removed from the dataset. The crash data is then aggregated to each grid cell. 

Crashes can be categorized based on their severity into property damage only (PDO), injury crash, and 

fatal crash. However, feedback from the advisory board suggests that PDO crashes might be 

underreported, for instance due to limited resources during the COVID-19 pandemic. Such underreporting 

https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95
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could lead to biased parameter estimates (Donnell et al., 2020). One strategy to mitigate the impact of 

underreporting on safety risk is to focus solely on severe crashes (i.e., injury and fatal crashes), which are 

typically less susceptible to underreporting. Consequently, we have separately calculated total crash 

records and Injury and Fatal Crash (IFC) records. 

  

(a)Total crash records (red dots) (b) Injury and fatal crash records (black dots) 

Figure 24. Crash records in New York City during 7/5/2022-12/31/2022 

Traffic Exposure Data 

In this study, Annual Average Daily Traffic (AADT) and Vehicle Miles Traveled (VMT) data are used as 

approximations for traffic exposure. The most recent AADT data (2021) was acquired from the NYSDOT 

Traffic Data View website (https://www.dot.ny.gov/tdv). As AADT data is a link-based feature of road 

networks, we calculated the VMT for each grid cell using this information. First, we identified long links 

that were not split at intersections and divided them, accordingly, assigning the same AADT value to the 

resulting segments. Next, we used the road length and AADT data to calculate the VMT. By employing 

spatial tools in ArcGIS, roadways were divided at the boundaries of each grid cell to obtain the length of 

individual road segments within each cell. Finally, VMT was determined by summing the products of 

road segment lengths and their corresponding average daily traffic values (Figure 25). 

https://www.dot.ny.gov/tdv
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𝑣𝑚𝑡 = 365 × ∑ 𝐿𝑗

3

𝑗=1

× 𝐴𝐷𝑇𝑗  

𝐿𝑗: The length of the road segment j in the grid cell 

𝐴𝐷𝑇𝑗 : The average daily traffic of the road segment j 

Figure 25. Demonstration of computing VMT for a grid cell (Xie et al., 2017a) 

Road Network 

The road network data for New York City was obtained from Data.gov. Subsequently, the total road 

length and the total number of road network nodes within each grid cell were calculated. To compute 

the total road length, the roads were divided at the grid cell boundaries. We also aggregated the total 

counts of road network nodes (e.g., intersections) as input. Moreover, a binary highway index was 

established for each grid cell based on the presence (=1) or absence (=0) of urban highways.  

Transport Facility 

The total number of bus stops and subway stations per cell are also used as features of safety risk. The 

two latest shapefiles, showing the NYC bus stops and subway stations on November 2020, are acquired 

from the website of the Newman Library of Baruch College, CUNY (Newman Library of Baruch College, 

2020).  

Land Use 

Land use data was acquired from NYC Department of City Planning (NYC DCP) Map PLUTO version 2022, 

v3.1 (https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page,). Each 

building class is assigned to the most appropriate land use category. We derived four land use category 

groups for this study, including residential area (R), commercial area (C), mixed residential and 

commercial area (Mixed R & C), and open space area (Figure 26). Land use data, represented as polygon 

features, were utilized to calculate the area percentage of each of the four land use category groups 

within the grid cells. To accomplish this, the polygons were split at the grid cell boundaries, and the 

about:blank
https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
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Spatial Join tool in ArcGIS was employed to determine the percentages of residential area, commercial 

area, mixed residential and commercial area, and open area within each grid cell. 

    

(a) Residential area (b) Commercial area (c) Mixed R & C (d) Open area 

Figure 26. The land use group spatial distribution in the study area 

Population Density 

Population data was obtained from the U.S. Census Bureau (https://data.census.gov/), which offers 

various aggregation levels, such as census tracts, census tract block groups, and census tract blocks. The 

most recent data (2020 P1 Race table) aggregated at the census tract block level was used for calculating 

the population within each grid cell. The calculation method for determining the population in each grid 

cell assumes a uniform distribution of population within the region. The population within a grid cell 

originating from a specific census block was then calculated by multiplying the total population by the 

area ratio of the grid cell. 

 

4.2.3 Variable Summary 

The summary of the input variables used for safety analysis, including their mean, standard deviation 

(S.D.), median, minimum (Min), and maximum (Max) values, is provided in Table 7. The development of 

the safety risk index will be based on these variables, ensuring a comprehensive understanding of the 

potential factors influencing safety risk within the study area. These variables are included to cover 

aspects not only direct results in crashes (e.g., crash records), but also indirectly increase or decrease 

crash risk, such as traffic exposure, road geometry, and land use. 

https://data.census.gov/
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Table 7 Input Variable Summary 

Variable Mean S.D. Median Min Max 

Crash_tot 1.43 2.02 1 0 15 

Crash_fi 0.58 1.06 0 0 8 

CW_ME8 30.87 38.30 19 0 504 

CW_OEM 1.24 2.01 0 0 17 

Intersection 0.93 1.40 1 0 18 

Subway_station 0.026 0.17 0 0 2 

Bus_stop 0.34 0.65 0 0 4 

Road_length (ft) 407.97 176.82 355.22 3.64 1032.05 

VMT (mi*veh) 1259 1869 723 0 15777 

Highway 0.08 0.27 0 0 1 

Res_r 15% 20% 5% 0% 98% 

Comm_r 16% 23% 2% 0% 87% 

Open_r 9% 26% 0% 0% 100% 

Mix_rc_r 14% 16% 8% 0% 91% 

Population 259 226 227 0 1367 

Note: Crash_tot is the total crash count in a grid, Crash_fi is the injury and fatal crash count in a grid, Res_r is the 

residential area rate in a grid, Comm_r is the commercial area rate in a grid, Open_r is the open area rate in a grid, 

Mix_rc_r is the mixed residential area and commercial area in a grid. 

 

4.3 Correlation between crash data and near misses 

4.3.1 Correlation Coefficient 

We first examine the correlation between the variables using correlation matrix, which is a statistical 

technique used to evaluate the relationship between a pair of variables in a data set. As shown in Figure 

27, the correlation coefficients of the total crash counts and other independent variables range from -

0.16 to 0.43. Specifically, the correlation coefficients of crash count and near misses (CW_ME8) is 0.43, 

which is the highest among those correlation coefficients for crash count. The correlation coefficients of 
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injury and fatal crash counts and other independent variables range from -0.14 to 0.36. Specifically, the 

correlation coefficients of crash count and near misses (CW_ME8) is 0.31, which is the second highest 

among those correlation coefficients for crash count. This indicates that the crash count (both total 

crashes and injury and fatal crashes) and near misses have a moderate positive linear relationship. 

 
Note: X on a number means the correlation coefficient is insignificant. Crash_tot is the total crash count in a grid, 
Crash_if is the injury and fatal crash count in a grid. 

Figure 27. The correlation matrix of the safety related variables 

4.3.2 Spatial Correlation 

4.3.2.1 Global Bivariate Moran’s I 

Moreover, the bivariate Moran's I statistics (Moran, 1950) is used to measure spatial correlation 

between a pair of variables. It assesses whether the value of one variable at one location is associated 
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with the value of another variable at a neighboring location. The z-score of Moran’s I (𝑍𝐼) and pseudo p-

value (Anselin et al., 2006) obtained from permutation test is used to assess the significance of Moran’s 

I. 𝑍𝐼 can be computed as: 

𝑍𝐼 = (𝐼 − 𝐸[𝐼])/𝑆𝐷[𝐼]                                                                     (5) 

where 𝐸[𝐼] is the expectation of I and 𝑆𝐷[𝐼] is the standard deviation of 𝐼. A positive 𝑍𝐼 indicates the 

observation distribution is spatially clustered (Xie et al., 2015) and a pseudo p-value less than 0.05 

confirms that 𝐼 is statistically significant at the confidence level of 95% (Goodchild, 1986). More details 

about Global Moran’s I practice can be found in previous studies (Gao et al., 2018; Xie et al., 2015; Xie et 

al., 2014).  

We assume the null hypothesis is complete spatial randomness. The Moran's I test was conducted using 

several weight matrices, including threshold distances and k-nearest neighbors, on four pairs of 

variables: 1) crash count and near misses, 2) near misses and crash count, 3) IFC count and near misses, 

and 4) near misses and IFC count. The goal of testing these pairs is to understand whether a location 

with a high crash count also experiences a high number of near misses (Pair 1 & 3), and if a location with 

a high near miss count also has a high crash count in its vicinity (Pair 2 & 4). Near miss data is using the 

data extracted from ME8. The results of global Moran’s I test are presented in Table 8 and Figure 28.  

 Table 8 Global Moran’s I statistics (k-nearest neighbors, k=8). 

 8-nearest neighbors I E(I) SD(I) Zi Pseudo p-value 

Total Crash-Near Miss 0.0977 -0.0005 0.0095 10.2509 0.001 

Near Miss-Total Crash 0.0956 -0.0005 0.0095 10.0311 0.001 

Injury and Fatal Crash -Near Miss 0.0588 -0.0005 0.0090 6.4906 0.001 

Near Miss-Injury and Fatal Crash 0.0587 -0.0005 0.0089 6.5677 0.001 
 

Since all the p-values are statistically significant, and the z-scores are positive using different weight 

matrix. We can reject the null hypothesis. The results indicate a statistically significant spatial correlation 

- that is to say, the spatial distribution of high and/or low values in all four pairs is more spatially 

clustered than would be expected if the underlying spatial processes were random. 
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(a) Total Crash Count and Near Misses (b) Near Misses and Total Crash Count 

  
(c) Injury & Fatal Crash Count and Near Misses (d) Near Misses and Injury & Fatal Crash Count 

  

Figure 28. Bivariate Moran’s I for Near Misses and Crash Counts 

4.3.2.2 Bivariate Local Indicators of Spatial Association (BiLISA) 

While bivariate Moran's I provides a global measure of spatial correlation, we also investigated bivariate 

Local Indicators of Spatial Association (BiLISA). This local measure evaluates the spatial correlation 

between two different variables and can identify specific locations as either spatial clusters (hotspots) or 
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spatial outliers (cold spots). Local Moran’s I for the observation 𝑧𝑖, 𝑧𝑗 in cell 𝑖, 𝑗 with weight matrix 

wij and N observations (Anselin, 1995) can be computed as: 
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z
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                                                     (6) 

The bivariate LISA can identify four types of spatial association: (1) High-High, (2) Low-Low, (3) High-Low, 

and (4) Low-High. High-High and Low-Low are known as spatial clusters. They have a high value for one 

variable and are surrounded by areas with high values for the other variable or have a low value for one 

variable and are surrounded by areas with low values for the other variable, respectively. This indicates 

positive local spatial correlation. High-Low and Low-High are known as spatial outliers. They have a high 

value for one variable and are surrounded by areas with low values for the other variable or have a low 

value for one variable and are surrounded by areas with high values for the other variable, respectively. 

This indicates negative local spatial correlation. 

 

Bivariate LISA (Total Crashes) 

Figure 29 presents the total crash related bivariate LISA results for the two pairs “Crash-Near Miss” and 

“Near Miss-Crash”. In our case, both Bivariate LISA have more clusters with positive local spatial 

correlation than that with negative local spatial correlation. For positive local spatial correlation 

locations, in both Bivariate LISAs, the low-low clusters are around the central park and Chelsea area, this 

can be viewed as low-risk locations. The high-high locations in Crash-Near Miss Bivariate LISA (Figure 

29(a)) are mostly near the Queensboro bridge linkage road area and Midtown East between 34th Street 

and 42nd Street while the high-high locations in Near Miss-Crash Bivariate LISA (Figure 29(b)) are around 

the Queensboro bridge linkage road area and Midtown East between 34th Street and 42nd Street. 

For negative local spatial correlation locations, High-Low clusters in Crash-Near Miss Bivariate LISA (high 

crash count surrounded by low near miss count) and Low-High clusters in Crash-Near Miss Bivariate LISA 

(low near miss count surrounded by high crash count) are most concerned. Based on the Bivariate LISA 

results, near-miss data may not be a good approximation for crashes in the upper west side (west side of 

Manhattan, near Central Park). Therefore, the use of near-miss data in this area should be approached 

with caution. The low-high locations in the Near Miss-Crash Bivariate LISA may be of less concern, as 

most of them are close to high-high clusters, indicating a potential spillover effect. 
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(a) Total crash count-ME8 Bivariate LISA  (b) ME8-Total crash count Bivariate LISA 

 

Figure 29. Bivariate LISA Cluster Map using K-nearest neighbor (k=8) 

In summary, the High-High clusters (in red) and Low-Low clusters (in blue) in Near Miss-Crash Bivariate 

LISA Map (Figure 29(b)) are the areas where near-miss data can be reliably used to signify high and low 

crash risk. Similarly, the High-High and Low-Low clusters on the Crash-Near Miss Bivariate LISA Map 

(Figure 29(a)) are regions where near-miss data may likewise offer a relatively valuable indication of 

either high or low crash risk. Nonetheless, the utilization of near-miss data should be carefully 

considered when applied to the Upper West Side. 

Bivariate LISA (IFC) 

Figure 30 illustrates the bivariate LISA results for the two pairs “IFC crashes-Near Miss” and “Near Miss-

IFC crashes”. In Figure 30 (b), clusters with negative local spatial correlation outnumber those with 

positive local spatial correlation. The high-high clusters primarily reside in areas such as Queensboro 

Bridge, 34th Street, and the Penn Station vicinity. Compared with the ME8-Crash Bivariate LISA (Figure 

29(b)), the ME8-IFC Bivariate LISA map doesn't exhibit as many low-low clusters. High-low clusters are 

spread throughout central Manhattan, with some nestled between FDR and 9A. Low-high clusters are 

mainly found in the Broadway area between 50th and 55th streets, and in the Kips Bay area. 
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(a) IFC-ME8 Bivariate LISA  (b) ME8-IFC Bivariate LISA 

 

Figure 30. Injury and Fatal Crash related Bivariate LISA cluster map using K-nearest neighbor 

(k=8) 

Generally, when we shift from considering total crashes to IFC crashes, the crash-ME8 bivariate LISA 

map remains largely unaffected. However, changes are found in the ME8-crash map. These changes 

might be a result of the decrease in the number of crashes, which could in turn influence the statistical 

significance of the tests. 

4.4 Safety Risk Index Development 

In this section, we introduce the method to develop safety risk index using total crash frequency case as 

an example. The safety risk index using other crash frequency, such as injury and fatal crash frequency, 

VRU involved crash frequency, can be found in section 4.6 and 4.7. 

4.4.1 Variable Preliminary Selection 

We applied the correlation matrix (Figure 27) and Variance Inflation Factor (VIF) to identify highly 

corelated variables. The VIF is a measure that directly quantifies the ratio of the variance in a model that 

includes all features, compared to the variance in a model that includes only the feature under 

consideration. Upon examining the correlations between variables, we observed that CW_OEM is highly 

correlated with both CW_ME8 and VMT. Given that CW_ME8 has a larger sample size and higher 

correlation coefficients with Crash_count, we have decided to exclude CW_OEM from the safety risk 

index development. Another variable exhibiting high correlation coefficients is population, which is 

strongly correlated with Res_r and Mix_rc_r. Therefore, we opted to remove the population from 
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subsequent steps. Lastly, VMT and Highway demonstrate high correlation with one another. In 

consideration of the VIF results (refer to Figure 31), where only the VIFs of VMT and Highway exceed 

2.5, we have decided to exclude both variables to avoid multicollinearity issues. 

 

Figure 31. The VIF of each safety risk related variable 

4.4.2 Statistics Modeling 

To provide a more interpretable analysis and to understand the positive or negative effects of variables 

on crash frequency, a Negative Binomial (NB) model is employed. The NB model is a widely used 

statistical method for crash frequency modeling and is an extension of the Poisson model. The Poisson 

model assumes that the mean and variance of crash count data are equal, but real-world crash data 

often exhibit overdispersion, with the variance exceeding the mean. To account for this overdispersion, 

the NB model introduces an additional parameter to capture the unobserved heterogeneity in the data. 

Based on the variable selection process, we utilized the preliminarily selected variables to construct an 

NB model. The StepAIC function in R was employed to identify the optimal variables for input. The 

resulting best NB model is presented in Table 9.  

 Table 9 The estimate results of best NB model. 

 Estimate Std. Error z value Pr(>|z|) 

Intercept -0.88 0.09 -9.389 0.00** 
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CW_ME8 0.01 0.00 10.694 0.00** 

Intersection_c 0.12 0.02 6.893 0.00** 

Subway_station 0.20 0.14 1.506 0.132 

Bus_stop 0.19 0.04 4.878 0.00** 

Road_length 0.01 0.00 10.152 0.00** 

Res_r -0.73 0.17 -4.419 0.00** 

Open_r -1.04 0.16 -6.358 0.00** 

Mix_rc_r 0.28 0.17 1.587 0.112 

Note: ** denotes significance at the 5% level,  * denotes significance at the 10% level. 

The StepAIC function removed the Comm_r variable, and apart from the insignificant 

Subway_station variable, all other variables were found to be significant in the NB model. CW_ME8, 

Intersection_c, Bus_stop, Road_length, and Mix_rc_r have a positive impact on crash frequency, while 

Res_r and Open_r exhibit a negative influence on crash frequency. 

4.4.3 Variable Importance by Machine Learning Method 

XGBoost (Chen and Guestrin, 2016), short for eXtreme Gradient Boosting, is an advanced machine 

learning algorithm based on scalable tree boosting system that has gained significant popularity due to 

its remarkable performance in various applications. It is an ensemble learning technique that employs 

the gradient boosting framework to construct a series of decision trees, improving the predictive 

performance by combining the results of multiple weak learners. The XGBoost model is known for its 

capability to handle a wide range of data types, scalability, and efficiency in training large datasets (Chen 

and Guestrin, 2016). In this project, we utilized the XGBoost model to assess the relative importance of 

the variables in predicting crash frequency. The future importance results of the variables are shown in 

Table 10. 

 Table 10 The feature importance of XGBoost model. 

Feature Gain Cover Frequency Importance 

CW_ME8 0.35 0.27 0.26 0.35 

Intersection_c 0.27 0.14 0.08 0.27 

Road_length 0.23 0.31 0.32 0.23 
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Res_r 0.09 0.15 0.20 0.09 

Open_r 0.04 0.09 0.09 0.04 

Bus_stop 0.02 0.04 0.05 0.02 

CW_ME8 0.35 0.27 0.26 0.35 

Intersection_c 0.27 0.14 0.08 0.27 

 

4.4.4 Safety Risk Index (SRI) 

We propose the following six steps to construct the safety risk index. 

● Step 1 - Variable Selection: Apply variable selection based on correlation matrix and Variance 

inflation factor (VIF) analysis.  Build an optimum Negative Binomial model to link crash 

frequency to the remaining variables. The significant variables in the optimum Negative 

Binomial model are the variables used for subsequent SRI development. 

● Step 2 - Utilize rank values instead of raw values: Leveraging the advantages of robustness and 

independence from distribution assumptions, we determine to use rank values rather than raw 

values for each variable. 

● Step 3 - Employ feature importance from XGBoost as weights: When combining different 

variables, the weight assigned to each variable is determined by its feature importance score in 

the XGBoost model, with linear combination as the method of aggregation. 

● Step 4 - Derive the sign of the weight from the estimates of the Negative Binomial model: As 

some variables have a positive impact on safety risk while others have a negative impact, we 

adopt the sign of the weight from the Negative Binomial model when developing the index. 

● Step 5 - Incorporate crash frequency into the index, assigning it a weight equal to 𝛼: Inspired by 

a previous study (Jiang et al., 2020), we include crash frequency in the safety risk index as 

historical crash count is still one of the most important indicators for potential crash risk at a 

certain location. 

● Step 6 – Multiply each variable's rank score by its weight to compute SRI. 

By adhering to these steps, we developed a robust and comprehensive safety risk index that can 

effectively incorporate the relevant factors in assessing safety risk within the study area. The safety 

risk index (SRI) can be computed by: 
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𝑆𝑅𝐼 = 𝛼 ∗ 𝑅𝑎𝑛𝑘(𝐶𝑟𝑎𝑠ℎ𝑐𝑜𝑢𝑛𝑡) + 𝜔𝑖 ∑ 𝑅𝑎𝑛𝑘(𝑥𝑖)𝑁
𝑖=1                                          (7) 

Where Rank(.) is a function that assigns an order value to a variable, arranging them from smallest to 

largest value, 𝐶𝑟𝑎𝑠ℎ𝑐𝑜𝑢𝑛𝑡  is the crash frequency in a grid, 𝛼 is the weight of crash frequency, 𝑥𝑖 is the 

selected variables related to safety risk, 𝜔𝑖 is the weight of each variable, it uses the feature importance 

score in XGBoost with the sign of the estimate from the NB model. We used 𝛼 = 1 in this study. 

4.4.5 Min-Max scaling and Scaled Safety Risk Index (SSRI)  

Ultimately, to facilitate comparison and interpretation of the results, we employ a linear scaling 

technique known as Min-Max scaling to standardize the safety risk index within a 0-100 range. The Min-

Max scaled Safety Risk Index (SSRI) is computed using the following formula: 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑆𝑅𝐼 (𝑆𝑆𝑅𝐼) =
𝑆𝑅𝐼−𝑚𝑖𝑛(𝑆𝑅𝐼) 

𝑚𝑎𝑥(𝑆𝑅𝐼) −𝑚𝑖𝑛(𝑆𝑅𝐼) 
×  100                                                 (8) 

4.5 Safety Analysis Results and Discussion  

We calculated the SSRI based on the proposed methodology by fusing the multiple datasets described in 

the data preparation section. For better visualization, the SSRI values were divided into ten intervals, 

with each interval assigned a distinct color. The SSRI effectively combines a variety of information 

related to traffic safety (crashes, near misses, land use, roadway features, traffic exposure etc.), 

providing a comprehensive view of the spatial distribution of safety risks, as illustrated in Figure 32.  

For comparison purposes, we also develop a visualization using only crash count data (Figure 33). Figure 

33 reveals that crash frequency values per cell only span from 0 to 15, with 15 being the maximum. This 

indicates that crash frequency is constrained to integer values within this range. When trying to 

understand and interpret cells with identical crash counts, and particularly in identifying underlying 

contributing factors that might necessitate safety intervention, a data fusion approach becomes critical. 

Furthermore, the data reveals that the majority of grid cells have a crash frequency within the narrow 0-

2 range. Sole reliance on crash frequency data thus limits the granularity of safety risk representation, as 

the range is insufficiently detailed. 

Two patterns can be observed from Figure 32. Firstly, the grids containing linkage roads of bridges and 

tunnels have higher SSRI values, which aligns with the findings of previous research (Xie et al., 2021). 

This observation may be attributed to the complexity of the road network at these locations. The 

complex road network (more merge and diverge at those locations) necessitates more frequent lane 
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changes by drivers at specific locations, which can lead to an increased likelihood of human errors by 

drivers. These errors, in turn, may contribute to higher safety risks observed in such areas. In addition, 

the large disruption of traffic may also increase the likelihood of conflicts among motor vehicles, 

pedestrians, and bicyclists (Xie et al., 2021). Second, the high-risk index grids are predominantly 

distributed along the avenues from 6th Ave to 8th Ave. These avenues are characterized by a high 

density of pedestrian activity, likely due to the presence of commercial establishments, public transit 

access points, and other urban amenities. The increased pedestrian presence in these areas, combined 

with vehicular traffic, can lead to a higher potential for conflicts and safety risks. 

 

Figure 32. The spatial distribution of grid-based scaled safety risk index 
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Figure 33. The spatial distribution of grid-based crash frequency 

A significant challenge lies in the fact that crashes are infrequent occurrences, leading to scenarios 

where crash data may be limited. Therefore, we also constructed a hypothetical scenario where crash 

data is unavailable, a situation that might occur if the observation period is too short to yield enough 

crash data, but the near-miss count has sufficient samples. In this scenario, the near miss count 

becomes the highest weighted variable, and the combination of near miss count, and other information 

serves the need to indicate the safety risk within a city. Figure 34 illustrates the SSRI spatial distribution 

using only near miss data (excluding crash counts). It exhibits relatively similar patterns compared to 

Figure 32, as both capture the grids surrounding the linkage roads of bridges and tunnels, grids along 

6th-8th Avenues in midtown, and grids near Penn Station. This suggests that even in the absence of 

crash data, the safety risk map can still be effective in capturing the primary patterns of safety risk 

within a city. 
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Figure 34. Safety Risk Index Spatial Distribution Using Only Near Miss Data (without Crash 

Counts) 

4.6 Injury and Fatal Crash related SSRI 

Given the underreporting issue mentioned in 4.2.2, we have also constructed an Injury and Fatal Crash 

Related Safety Situation Risk Index (IFCR-SSRI) followed the steps listed in Section 4.4. Table 11 presents 

the variables that were used to calculate the IFCR-SSRI and their parameters. 

 Table 11 Injury and Fatal Crash related SSRI Variables and Their Parameters. 

Variable 
Injury and Fatal 
Crash 

ME8 Near Misses 
Road 
Length 

#Intersections Population 

Weight 1 0.24 0.22 0.21 0.13 

Sign + + + + + 

 

Variable 
Residential Land 
Used Rate 

Mixed Residential 
and Commercial 
Land Used Rate 

#Bus Stops 
Open Area Land Used  
Rate 

#Subway Station 

Weight 0.08 0.06 0.03 0.03 0.01 

Sign - + + - + 
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Similar to the analysis conducted in Section 4.5, Figure 35, Figure 36, and Figure 37 display the 

distribution of IFCR-SSRI, Injury and Fatal Crash Frequency (IFCF), and the IFCR-SSRI exclusive of IFCF, 

respectively. Similar implications can be drawn from these three figures: Figure 35 indicates that the 

grids comprising the linkage roads of bridges and tunnels had higher SSRI values, likely due to the 

complex nature of the road networks at these locations. In Figure 35, the high-risk index grids are 

predominantly distributed along the avenues from 6th Ave to 8th Ave, which may be resulted from a 

high density of pedestrian activity. Figure 36 reveals that IFCR values per cell only range from 0 to 8, 

with 8 being the maximum. Thus, exclusive reliance on IFCR crashes may limit the detailed 

representation of safety risk, as the range is insufficiently detailed. Figure 37 illustrates the IFCF-SSRI 

spatial distribution using only near miss data (excluding crash counts) and shows that with the absence 

of crash data, the IFCF-SSRI can still be effective in capturing the primary patterns of safety risks. 

 

Figure 35. The spatial distribution of grid-based injury and fatal crash related SSRI 
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Figure 36. The spatial distribution of grid-based injury and fatal crash frequency 

 

Figure 37. Injury and fatal crash related scaled safety risk Index spatial distribution using only 

near miss data (without crash counts) 
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4.7 VRU SSRI 

We also constructed VRU SSRI using pedestrian and cyclist data. However, due to less VRU near miss 

events identified by the crowd sourced CAVs, the usage of VRU SSRI may be limited. Details of the VRU 

SSRI can be found in the Appendix. 

4.8 Limitation and Conclusion 

By leveraging the power of multisource data, statistical modeling, and machine learning techniques, the 

proposed SSRI can be used as a safety risk index for traffic planning. It provides a more comprehensive 

and accurate representation of the confounding factors influencing traffic safety in a complex urban 

network. This index can potentially be used by decision-makers to prioritize strategies, allocate 

resources efficiently, and assess the impact of their implemented measures on enhancing traffic safety. 

The proposed approach has certain limitations. While the initial intent was to include both time variant 

and static variables to construct the SSRI, we ultimately only incorporated crash frequency and CW_ME8 

as dynamic variables, which can be updated at a relatively high frequency. Other directly related safety 

variables, such as speeding tickets, are not sufficiently prevalent in the area we tested. Other variables 

like land use, road network, and traffic facility locations are considered static variables, which are 

typically updated less frequently. Currently, the SSRI is employed as a one-time index representing the 

safety risks associated with the study period. In the future, we plan to implement it as a time-dependent 

algorithm that will adjust based on the user-selected study period. We also aim to expand its application 

to encompass the entire city, so that other time variant variables such as speeding tickets can be 

incorporated. 
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Section 5 Web-based Applications 

5.1 Web Application Architecture 

As a part of this project, two applications were developed: 1) WorkZoneX, a web-based application using 
computer vision and publicly available traffic camera for urban work zone detection in NYC; and 2) 
SAFExMAP, a web-based application that provides data visualization and spatiotemporal analysis of 
various safety-related data in NYC. This includes crash records, near-misses, and other road hazards 
detected by computer vision techniques via in-vehicle cameras, as well as speeding tickets. 

Both applications are embedded in an all-in-one web-based platform called “Urban Intellivision” hosted 
on a C2SMART server. The work zone application works by capturing live CCTV camera images, detecting 
work zones within the image data, performing analysis on the detection results, and presenting live 
statistics on the web page. The safety view map filters traffic data stored in our on-premise databases 
and utilizes deck.gl to render the data as different map layers for comparison and aggregation. As 
different modules may be implemented using different frameworks and programming languages (such 
as TypeScript for the front-end, Java for the back-end, and Python for the detection algorithm), their 
interaction can be complicated, leading to high coupling when using a monolithic system. To address 
this issue, we have adopted a microservices architecture (Figure 38), which separates different functions 
and makes the system easier to develop, test, and maintain. 

 

 Figure 38. Microservice Architecture 
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The microservice architecture includes several distinct components, such as a collector that regularly 
retrieves the most recent CCTV images (every fifteen minutes), a detector that applies computer vision 
algorithms to identify work zone objects in the images and determine the existence of work zones, a log 
collector and a statistical analyzer that gather and evaluate the detection results. Additionally, we have a 
work zone service, a safety risk service, a front-end, and an API gateway, which offer web services. 

5.1.1 Inter-process communication 

In the architecture described above, each service is implemented as an individual process. As a result, 

the services must communicate with each other using an inter-process communication (IPC) 

mechanism. When selecting an IPC mechanism for a service, it's critical to consider how the services will 

interact. There are various interaction styles between clients and servers that we are utilizing. 

Table 12 Inter-Process Communication Methods. 

 One-to-one One-to-many 

Synchronous Request/Response (REST API) N/A 

Asynchronous Notification (RabbitMQ) Publish/Subscribe (RabbitMQ) 

Synchronous one-to-one communication refers to direct and immediate information exchange between 

two parties, in a request-response pattern. REST APIs are commonly used (Polák and Holubová, 2015) to 

implement this kind of communication, where a REST API request is sent from the front-end to the back-

end to retrieve the corresponding traffic data and show it on the page. On the other hand, asynchronous 

one-to-one communication involves a delay in exchanging information between two parties, where both 

the sender and the receiver can continue with their processing without blocking each other. For 

example, when the image collector acquires a certain number of CCTV images and intends to transfer 

them to the image detector for detection, it doesn’t want to wait for the detection results to halt image 

collection. At the same time, the image detector may also not be available to receive the request. To 

overcome this issue, the image collector delivers the metadata of the images that need to be detected 

as notifications in a message queue called RabbitMQ. The image detector then retrieves this metadata 

from the queue to perform detection when it is ready, ensuring real-time detection to the fullest extent. 

Asynchronous one-to-many communication involves a sender transmitting a message to multiple 

recipients, and the sender does not hold up its own processing to wait for responses from any 

recipients. This pattern is useful when multiple services need the detection results to collect logs or 

calculate corresponding statistics after image detection is finished. To accomplish this feature, a 
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publish/subscribe architecture is used, where the publisher sends messages to RabbitMQ once and all 

subscribed recipients receive and process them independently. 

5.1.2 Automated pipeline 

In addition to automating data flow, our application deployment process is also fully automated through 

a pipeline (Figure 39). In a manual deployment process, we would have to manually upload the code to 

the server and then log in to execute the appropriate build and deployment operations. This manual 

process is both time-consuming and error-prone. However, with our automated pipeline, the code is 

uploaded to a private Git repository, and Jenkins automatically recognizes this action and pulls the code 

to the server. From there, it runs the necessary build and test scripts, uploads the resulting Docker 

image to our self-hosted Docker Registry, and finally retrieves the latest version from the Registry for 

deployment. This automated deployment process not only improves the application's reliability and 

deployment efficiency but also provides backups for each version, which can be used in case of version 

rollback situations. 

 

 Figure 39. Automated pipeline 

5.1.3 Indexing and caching 

We are utilizing indexing and caching to boost query performance in our web application. Indexing 

refers to a database technique that pre-sorts the values of one or more attributes using a data structure. 

By leveraging an index, the database system can quickly locate the relevant records, avoiding the need 

to scan the entire table and significantly improving query speed. On the other hand, caching is a data 
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storage technique that involves storing data in a high-speed medium, such as memory or a fast disk, to 

enable faster retrieval and updating, thereby enhancing the application's overall performance.  

SAFExMAP uses several static data sets, including traffic crashes and speeding tickets, which consist of 

millions of records. Performing full table scans on these data sets would lead to significant delays and 

negatively impact the user experience. To address this issue, we created indexes on primary query 

keywords, such as timestamps, to enhance search performance. The table below showcases the time 

required to query one month of data in each table, with and without indexes: 

 Table 13 Query Speed Comparison with and without Indexing. 

Table Query speed (without index) Query speed (with index) 

ME8 895 ms 88 ms 

OEM 812 ms 89 ms 

Traffic crash 2.4 s 275 ms 

Speeding ticket 4.8 s 510 ms 

 

The results demonstrate that indexes yield a performance boost of almost ten times. Additionally, as the 

data tables are typically read-only, we can avoid the additional cost of index maintenance. 

The WorkZoneX Dashboard requires real-time statistical analysis data, which includes obtaining the 

latest count of work zones in each borough, the current duration of work zones, the total number of 

work zones in the past four hours, and the duration of work zones with the end time at the previous 

hour. However, retrieving this analysis data through database queries can be a cumbersome process, as 

it may involve large volumes of data or multiple queries. Considering that the calculation of statistics is 

based on the results of image detection, which is cyclical in nature. Therefore, as an alternative, it is 

more efficient to calculate the results of the statistics in the backend as triggered by the completion of 

image detection and put them in the cache for backend service calls. 

5.1.4 List virtualization 

The data source we are using includes data from close to 1,000 CCTV cameras in New York City, and we 

need to display an equal number of detected images in WorkZoneX during each time period in the form 
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of an image gallery. However, the traditional front-end rendering approach loads all the images 

simultaneously, which is inefficient due to the corresponding loading of DOM elements and network 

requests for each image component. Furthermore, this rendering approach is unnecessary, as the user 

cannot possibly view so many images at once. To enhance front-end rendering efficiency, we utilized a 

list virtualization optimization pattern for efficiently displaying large data lists (Figure 40). This method 

involves virtualizing a list of items by maintaining a window and moving it around the list to display only 

items visible to the user. As a result, the page only renders a few image components initially and loads 

more data in real-time as the user slides through the list. This method significantly optimized the page 

load speed from 8 seconds to 1 second, an 87.5% improvement in speed. 

 

 Figure 40. List virtualization with a view window 

5.1.5 Multi-threading detection 

Detecting work zones can be a slow task, as it typically requires significant system resources. To speed 

up the computation of work zone detection algorithms, there are various methods that can be applied, 

including upgrading hardware, compressing models, and utilizing distributed computing. One effective 

way to make the most of computational resources is to use multiple CPU cores for multi-threading 

parallel computation. To balance the trade-off between image detection throughput and average 

latency, we have found it effective to assign the task of detecting 100 images to a single thread for 

execution. However, it's important to note that using more threads doesn't necessarily lead to better 

computational efficiency, as the overhead of executing the thread lifecycle and methods gradually 

increases with the number of threads used, even if CPU utilization may also increase. Therefore, it's 

crucial to carefully decide the number of threads used in order to achieve optimal performance. We 

conducted a performance evaluation for one timestamp of all the CCTV image data by recording the 



 

 

 

 

  

71 Exploring Cost-effective Computer Vision Solutions for Smart 

Transportation Systems 

running time of the work zone detection algorithm with varying numbers of threads, which generated 

the following curve. The graph indicates that the optimal performance is achieved when the number of 

threads is set to 5, after which it stabilizes. Hence, we have determined 5 to be the ideal number of 

threads to be employed. 

 

 Figure 41. Multi-threading algorithm performance evaluation 

5.2 Urban Work Zone Web-Based Application 

5.2.1 WorkZoneX Interface 

The urban work zone web-based application includes two sub-boards. The first one (Figure 42) features 

an interactive map displaying real-time detected work zones alongside the original CCTV camera images 

and images with detection output (e.g., bounding boxes of detected work zone-related objects). The 

detected work zones are also presented in a list format for ease of navigation. 
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Figure 42. WorkZoneX interface 

The second sub-board is a data dashboard that provides both disaggregated and aggregated statistics of 

detected work zones in real time (Figure 43). Historical data dating back to February 2023 is also 

available for download. 
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Figure 43. WorkZoneX dashboard interface 

5.2.2 WorkZoneX Functionalities 

The main features of the WorkZoneX app include the following:  

• Highlighting locations where work zones have been detected 



 

 

 

 

  

74 Exploring Cost-effective Computer Vision Solutions for Smart 

Transportation Systems 

• Highlighting locations with active work zones, including the presence of construction workers 

• Displaying bounding boxes of detected work zone objects 

• Displaying traffic volume by type around detected work zones 

• Displaying interactive charts that showcase disaggregated or network-level work zone statistics, 

including the number of work zones per borough over time, work zone durations, and work 

zone durations with the presence of construction workers 

• Providing download functions for historical work zone statistics 

Highlighting locations where work zones or construction workers have been detected 

The interactive map parses images from publicly available CCTV cameras operated by NYCDOT every 15 

minutes. Clusters of all the cameras are shown in the default setting and individual cameras can be 

viewed when zooming in (Figure 44). The developed detection algorithms are embedded and run in the 

backend in real time. A filter is included in the interactive map that can filter cameras with a work zone 

detected, and cameras with an active work zone with the presence of construction workers. 

    

Figure 44. WorkZoneX: Map components and filters 

If no work zone is detected, a green label stating "No Work Zone Detected" will appear at the bottom 

left of the camera image (Figure 45). Conversely, if a work zone is detected, an orange label stating 

"Work Zone Detected," accompanied by a small traffic cone icon, will be displayed at the bottom left of 

the camera image. 
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(a) A non-work zone (green label)                       (b) A detected work zone (orange label) 

Figure 45. WorkZoneX: Labels of non-work zone and detected work zone 

Displaying bounding box of work zone objects & traffic volume around the detected work zones 

Within each detected work zone, we provide a "Locate" function and a "Learn More" function. The 

"Locate" function automatically centers the map on the detected work zone that the user is viewing and 

displays the original CCTV image without detection bounding boxes (Figure 46). The "Learn More" 

function offers an enlarged image featuring the bounding boxes of detected work zone objects, along 

with a snapshot of traffic detection by type (car, bus, truck, pedestrian, cyclist) for the detected work 

zone at the timestamp indicated in the table (a timestamp within the most recent 15 minutes). A voting 

feature, with thumbs up and down options, is also included as shown in Figure 46. This allows users to 

vote, and the results of these votes can be utilized for future improvement. 
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Figure 46. WorkZoneX: Locate and Learn More functions 

Displaying interactive charts of work zone statistics & Provide download functions for historical data 

Several interactive charts of work zone statistics are provided in the Dashboard sub-board. The top of 

the Dashboard displays button-like card that shows the number of detected work zones in each borough 

in real time and provides a comparison of the number with the number of work zones in the previous 15 

minutes (Figure 47). 
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Figure 47. WorkZoneX: Number of work zones in each borough 

The second interactive chart presents the duration of individual work zones. As shown in Figure 48, we 

provide separate sub-charts for two types of work zones: 1) short-term work zones (those with a 

duration less than 24 hours), and 2) intermediate/long-term work zones (those with a duration longer 

than 24 hours). For each work zone displayed in the chart, its location, CCTV ID, and work zone duration 

both with and without the presence of construction workers are shown. 

  

Figure 48. WorkZoneX: Work zone duration chart for individual work zones 
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Figure 49 presents the two additional charts that provide temporal distributions on both the latest four-

hour work zone count and the latest one-hour work zone duration. These two charts also allow for the 

download of all historical data since the launch of the web-based platform's first prototype in February 

2023. 

 

Figure 49. WorkZoneX: Historical work zone statistics and download function 

5.3 Safety View Map Application 

5.3.1 SAFExMAP Interface 

The SAFExMAP provides data visualization and spatiotemporal analysis of various safety-related data in 

NYC. This includes crash records, near-misses, and other road hazards detected by computer vision 

techniques via in-vehicle cameras (provided by our industry partner, Mobileye), as well as speeding 

tickets. The interface of SAFExMAP is shown in Figure 50. The platform is divided into two modules: 1) 

Data Visualization (Data Viz), and 2) Spatiotemporal Analysis. The Data Visualization module facilitates 

the display of different types of data in a layered format and provides a variety of visualization options, 

including circle tile grid maps, scatter plots, polyline visualization, and 2D and 3D heatmaps. The 

Spatiotemporal Analysis module allows users to create customized polygon selections for multi-data 

analysis, considering both temporal and spatial contexts. 
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Figure 50. SAFExMAP interface 

5.3.2 SAFExMAP functionalities 

The main features of the SAFExMAP app include the following: 

• Displaying SSRI, SSRI rank, and component variables in a circle tile grid map 

• Providing a pairwise comparison table of user-selected locations on SSRI and its data-fusion 

based inputs 

• Displaying multi-source data in a layered format, facilitating a spatial understanding of traffic 

safety-related data 

• Offering various visualization options, such as scatter plots, bubble maps, 2D and 3D heatmaps, 

and bar charts 

• Allowing for customized user input regarding the study time period  
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• Conducting spatiotemporal analysis that permits user-defined polygon selections for multi-data 

analysis 

Displaying SSRI, SSRI rank, and component variables in a circle tile grid map 

As demonstrated in Figure 50, a circle tile grid map is used to show the grid-based SSRI results. Given 

that SSRI results are generated for all crashes/near misses, pedestrian-only crashes/near misses, and 

cyclist-only crashes/near misses, these filter options are available in the right panel. The interactive 

legend tied to the SSRI results allows users to filter results based on risk rank. Figure 51 illustrate an 

example of displaying only the top 10 (in red) and top 50 (in orange) high SSRI locations. When a data 

point is clicked, additional information about the risk index and its input is shown in a pop-up dialog box. 

 

Figure 51. SAFExMAP: Displaying SSRI, SSRI rank, and component variables 

Providing a pairwise comparison table of user-selected locations on SSRI 

SAFExMAP allows users to select a pair of locations and compare them in a table format. Figure 52 

illustrates an example of a table comparing two locations with SSRI ranks 1 and 7. 
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Figure 52. SAFExMAP: Pairwise Comparative Analysis of SSRI 

Displaying multi-source data in a layered format and offering various visualization options 

 

SAFExMAP integrated various safety related data and offers different visualization options to display 

them. Figure 53 shows the filter option and how the data layers look like in the right panel of the 

interface. Figure 54 demonstrates some examples using different visualization options. 

        

Figure 53. SAFExMAP: Filter options and data layers 
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Figure 54. SAFExMAP: Multi-source data visualization 
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Spatiotemporal analysis  

The second module in SAFExMAP allows for spatiotemporal analysis that enables user-defined polygon 

selections for multi-data analysis (Figure 55). Once the polygon is defined, it generates bar charts 

illustrating temporal patterns from four data sources: Near Miss (ME8), Near Miss (OEM), Traffic Crash, 

and Speeding Ticket (Figure 56). The range for the temporal analysis is also customizable based on user 

input. Furthermore, this module provides corresponding JSON files for all the data of the selected 

polygon. These files can be downloaded, enabling users to conduct further offline analyses. 

 

Figure 55. SAFExMAP: User-defined polygon for spatiotemporal analysis 
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Figure 56. SAFExMAP: Temporal pattern bar charts 

5.4 Security 

The web-based platform has several security measures implemented, including: 

1. Secure communications: To ensure that sensitive information exchanged between users and the 

application remained private and secure, we utilized NGINX as a reverse proxy to implement 

HTTPS communications in the web application. 

2. Input validation: To prevent injection attacks like SQL injection, we validated all input received 

from users on both the front-end and back-end. 

3. Data cryptographic hash: We utilized SHA-256 to create a secure hash of sensitive data such as 

passwords. This made it virtually impossible to reverse-engineer the original password from the 

hash value. 

4. Access controls: We implemented access controls to restrict access to specific features such as 

historical detected images based on user roles and permissions. 
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5.5 Cost Estimation 

The web-applications can be implemented on individual computers or servers. The capital cost of the 
application depends on various factors like architecture complexity, traffic patterns, and data processing 
and storage.  

5.5.1 Capital cost (if individual computer is used) 

If we consider a scenario with 300-500 of concurrent users, the following estimates outline the capital 
costs if individual computer is used. 

 Table 14 Capital cost (using individual computer). 

 Processor Memory Storage Network Total cost 

Minimum Intel Core i5 or AMD Ryzen 5 with 4 
cores and a clock speed of 2.5GHz or 
higher 

8GB RAM 256GB 
SSD 

10 Mbps to 
100 Mbps 

$250-$450 

Desired Intel Core i7 or AMD Ryzen 7 with 6 
or more cores and a clock speed of 
3.0GHz or higher 

16GB 
RAM 

512GB 
SSD 

100 Mbps to 
1 Gbps 

$500-$800 

 

5.5.2 Capital cost (if a local or cloud-based server is used) 

The following are the costs for deployment on local servers and cloud services. 

 Table 15 Capital cost (using server services). 

 Local server Total cost 

Minimum Dell PowerEdge T150 Tower Server $850 

Desired Dell PowerEdge T350 Tower Server $1,650 

 

 Cloud service Annual cost 

Minimum AWS EC2 a1.xlarge $900 

Desired AWS EC2 a1.2xlarge $1,750 
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5.5.3 Application development and operation costs 

The operating cost of the application includes the cost of server maintenance, which amounts to 
approximately $300 per year. The labor costs are categorized into development and maintenance 
expenses. The application development took approximately ten weeks, with a commitment of five hours 
per week. On the other hand, maintenance activities required two hours per week. Considering a 
developer salary of $27.50 per hour, the total cost for development amounts to $1,375, while the yearly 
maintenance cost is estimated at $2,860.  

5.5.4 Cost summary 

The total capital and annualized operation cost estimates are summarized as follows. 

 Table 16 Cost summary. 

 Individual Computer Local Server Cloud Server 

Computer/Server 

Acquisition (*desired 

requirement is used for 

estimation) 

$800 (one-time) $1,650 (one-time) $1,750 (per year) 

App development $1,375 (one-time) $1,375 (one-time) $1,375 (one-time) 

Server maintenance - $300 (per year) $300 (per year) 

App maintenance $2,860 (per year) $2,860 (per year) $2,860 (per year) 

Total $2,175 (one-time) + 

$2,860 (per year) 

$3,025 (one-time) + 

$3,160 (per year) 

$1,375 (one-time) + 

$4,885 (per year) 

Note: Cost estimates based on 300-500 of concurrent users. 

5.6 Summary and Lessons Learned 

In a nutshell, the Urban Intellivision web application implements a microservice-based architecture that 

facilitates inter-process communications and automated pipelines for real-time analysis and 

visualization of urban traffic data and work zones in New York City. Our team has applied various 

optimizations, such as list virtualization, indexing caching, and multi-threading detection, which 

significantly lower rendering, query, and detection latency by 87.5%, 89.1%, and 59.6%, respectively. 

Lessons learned from building this web-based tool are also summarized as follows: 
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● Utilize parallel computing to speed up computer vision detections. The complexity of our 

computer vision models, and the substantial amount of input data necessitate a considerable 

amount of resources, resulting in a performance burden. Nevertheless, the implementation of 

multi-threading enhances the effectiveness of CPU cores, ultimately increasing the overall 

throughput and decreasing the processing time of the program. 

● Apply list virtualization to accelerate page rendering performance. When rendering a large list, 

React has to traverse and diff the entire list, even if only a few items are visible on the screen, 

which can be a time-consuming process. However, we used list virtualization to allow only a 

small subset of the full list that is visible to the user to be rendered, resulting in a significant 

optimization of the rendering performance. 

Section 6 Advisory Board 

The collaborative approach in this project, involving academia, industry, and agencies, was primarily 

facilitated through regular communication with the advisory board. The board was assembled to include 

both technical and policy experts from various agencies and industries. Their role was to provide insights 

into the applicability of available camera and other transportation data, comprehend the operational 

and planning needs of agencies, and suggest desired functionalities for computer vision use cases. We 

found the 'wishlist' approach highly useful for identifying high-priority use cases of interest to local 

agencies. 

The research team organized three advisory board meetings, including a kick-off meeting and a follow-

up meeting after the first prototype of each app was developed. These meetings provided a platform for 

live demonstrations of the applications and also offered opportunities to gather regular feedback during 

the development of the two computer vision applications. This “Aigle Management” type of approach 

(an iterative approach to managing app development that focuses on continuous releases and customer 

feedback) helped minimize the risk of pursuing misguided or practically unfeasible research outcomes. 

For the work zone application, our focus was on obtaining stakeholder feedback about how the 

computer vision application could enhance the real-time work zone information database, manage work 

zone impacts dynamically, and improve street construction permit enforcement. For the safety risk map 

application, we concentrated on obtaining stakeholder feedback about their needs for using near-miss 

data for traffic safety analysis.  



 

 

 

 

  

88 Exploring Cost-effective Computer Vision Solutions for Smart 

Transportation Systems 

Throughout the project, the flexible format of the volunteer advisory board allowed for wider awareness 

about the project, attracting more agency personnel to join the board. The final advisory board included 

the following: 

● Paul Rothman, Director of Smart Cities + IoT, Strategic Initiatives, NYC Office of Technology and 

Innovation  

● Asheque Rahman, Senior Program Traffic Engineer, The Port Authority of New York & New 

Jersey 

● Howard Jiang, Engineer in Charge, Construction Management Unit within Infrastructure 

Division, NYC Department of Design and Construction  

● Justin Romeo, Director of Special Project, Regional & Strategic Planning, New York City 

Department of Transportation 

● Rob Viola, Director of Safety Policy & Research, New York City Department of Transportation 

● Maddalena Romano, Director of the Data/Asset Management Unit, New York City Department 

of Transportation 

● Seth Berman, Senior Transportation Planner, Transportation Planning and Management 

Division, New York City Department of Transportation 

● Zamir Alam, Deputy Director, Modeling and Data Analysis, New York City Department of 

Transportation 

● Dan Wan, Data Scientist, Modeling and Data Analysis, New York City Department of 

Transportation 

● Ruoran Lin, Transportation Planner, Transportation Policy and Analytics Division, New York City 

Department of Planning  

● Terri Matthews, Director of Town+Gown:NYC, a citywide university-community built 

environment research program at NYC Department of Design and Construction 

● Mark Davis, General Manager, Infrastructure & Government Sectors, Vexcel Imaging (Formally 

Head of Data Services & Business Development (North America), Mobileye). 

From the three meetings, we derived several key takeaways, which were used to refine our research 

approaches and outcomes or incorporated into our future app development plans: 

● The advisory board emphasized the importance of understanding how pedestrians and vehicles 

navigate around work zones. They suggested that if computer vision could estimate the size of 

the work zone or the number of lanes blocked by the work zones, it would be beneficial. 

Responding to this feedback, our research team developed an algorithm to estimate work zone 
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size and integrated traffic detection functions, enabling users to understand the number of 

vehicles and vulnerable road users around the work zones. 

● The advisory board expressed interest in understanding whether the near-miss data collected by 

the project team could predict injuries, as this is a question/concern for the NYCDOT. They also 

mentioned a desire for a usable matrix to indicate areas with better or worse traffic safety. 

However, they noted that an extremely detailed spatial aggregation level might not be 

necessary due to the potential for false precision. These comments guided the research team in 

refining their approach to examining near-miss data, its spatial correlation with crashes and 

surrounding environments, and the suitable level of spatial aggregation. 

● The advisory board suggested that instead of using general crash data, injury and fatality records 

should be used as they are more pertinent to the safety indicator. This is because Property 

Damage Only (PDO) crashes, although more common, may merely indicate friction and not all of 

them may be responded to by the police (e.g., due to limited resources during COVID), 

rendering them unreliable data points. While crashes involving injuries or fatalities might 

constitute a smaller dataset, they are more relevant when considering a safety indicator. Based 

on this comment, the research team has included an additional safety analysis that uses only 

injury and fatality crash data and near-miss events. 

● Privacy concerns in the use of video for analytics were raised by the advisory board. They 

suggested adopting a "privacy by design" approach, which in this case involves de-identifying 

any information from the CCTV feeds, such as blurring pedestrians, license plates, and other 

identifiable information. This requirement would be crucial for any project scaling beyond a 

research initiative, emphasizing the importance of planning for it during development. The 

research team agreed that privacy is always a paramount consideration. For CCTV cameras, the 

current public feeds are low resolution (<240p) and discontinuous (one image per 1-7 seconds), 

making privacy less of a concern as pedestrian faces or license plates cannot be seen, nor can 

pedestrians or vehicles be tracked. However, in keeping with the "privacy by design" principles, 

the research team plans to use a previously developed pedestrian mask algorithm to protect any 

identifiable information, which can be integrated into the current framework if privacy becomes 

a concern.  

● The advisory board recommended the collection of Maintenance and Protection of Traffic Plan 

(MPT) samples. MPTs could help define a work zone and its start time. They also suggested 

comparing detected "active" work zones with the permitted construction time periods. 

Although not yet implemented in the app's current version, the research team is working on 

these items, with plans to incorporate validation and comparison features in the future. 
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● The advisory board suggested for the Urban Work Zone Detection application, one sub-

application would be the ability to identify whether a construction site is adhering to the City's 

rule regarding temporary biking infrastructure. The rule states that is a construction project 

needs to take over a bike lane, it must make temporary accommodations for the lane to exist 

adjacent to the construction. Many times, the lane is just blocked without accommodation. 

Being able to identify this condition and request remediation of the situation from the 

construction team would help bolster safety for cyclists. The research team acknowledged 

observing bike lanes often blocked for various reasons. While this sub-use case wasn't tested 

due to the limitations of CCTV images capturing these situations, the research team is interested 

in developing a sub-use case if suitable data becomes available. 
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Section 7 Outreach and Technical Transfer 

This research project facilitates the adoption of computer vision for smart cities that will bring positive 

impacts on transportation planning and operations and provide cost-effective solutions to the 

transportation industry. Particularly, this project developed two prototype web-based applications for 

urban work zone detection and traffic safety risk analysis.  

The research outcomes are disseminated via the following ways:  

• The urban work zone detection algorithms were compiled into a technical paper for the 26th 

IEEE International Conference on Intelligent Transportation Systems (ITSC 2023). 

• The prototype system has been tested using NYC data. Demonstrations of the applications have 

been disseminated to transportation agencies including the NYC Department of Transportation, 

NYC Department of Design and Construction, NYC Department of City Planning, NYC Office of 

Technology Innovations, and the Port Authority of New York & New Jersey via virtual meetings. 

• The proposed computer vision approach was introduced at two peer-exchange events in NYC: 

“Vision Zero Research on the Road” and “Vision Zero Research Collaboration Forum”. These 

events were hosted by Town+Gown NYC, an initiative organized by the NYC Department of 

Design and Construction and the NYC Department of Health & Mental Hygiene. 

• The results and findings of this research were showcased at the ITS-NY 30th Annual Meeting and 

Technology Exhibition via a student poster presentation and was awarded the 2nd Prize. 

• Both the proposed computer vision approach and the web-applications were introduced during 

the four-day International KN-C³ Workshop. Faculty and students from the Korea Advanced 

Institute of Science & Technology (KAIST) were in attendance. 

• The results and findings of this research were presented at an international academic workshop 

“Application of Deep Learning & Data Science in Transportation and Smart City”, co-hosted by 

NYU Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning and Tongji 

University.  
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Section 8 Conclusion and Discussion 

8.1 Research Conclusion 

This research project facilitates the integration of computer vision technologies within complex urban 

environments. This approach holds significant potential to positively impact transportation planning and 

operations and offers economically efficient real-world solutions for the transportation industry. 

Specifically, this research project has led to the development of two highly interactive web-based 

applications - one dedicated to real-time urban work zone detection, and the other for conducting 

comprehensive traffic safety risk analysis. These prototypes not only present practical solutions to 

existing challenges but also underscore the substantial potential of utilizing deep-learning and vision 

techniques based on both fixed camera facilities and crowd sourced CAV-based traffic and camera data 

for traffic planning and operations. The key accomplishment of the real-time urban work zone detection 

and the safety risk index view map can be summarized as follows: 

• Our team introduced a comprehensive framework that merges various elements, namely, data-

centric AI training, topological analysis, gradient boosting classification, and reference-free size 

estimation. This forms a robust toolkit for work zone detection. The deep-learning based model 

for work zone object detection was developed using a data-centric approach. This approach 

aims to iteratively enhance the model's performance by augmenting a custom training dataset 

gathered from multiple sources, including traffic cameras, web-mined images, and 3D-simulated 

work zone images. This methodology helps overcome the scarcity of annotated real-world work 

zone images. 

• Our approach includes the introduction of an innovative topology-based inference method, 

utilizing XGBoost, to differentiate true work zones from other operational zones that feature 

some elements of work zones. Alongside this, we developed a reference-free work area size 

estimation method. This method uses the standard heights of common construction equipment 

to provide a generalized real-pixel distance approximation. 

• Evidence of the effectiveness of our model is seen in its performance - an average mAP of 74.1% 

across all work zone classes, an accuracy of 98.4% for scene identification, and an accuracy of up 

to 89.52% for size estimation. The system is capable of real-time identification and size 

estimation of work zones in complex urban settings, which can aid in the provision of more 

informed active work zone management, ultimately improving safety and mobility. 

• We embedded the proposed algorithms into an urban work zone detection web-base 

application, WorkZoneX, which allows real-time detection of the work zones in New York City via 
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900+ existing CCTV cameras. Users are able to view the detected work zones with and without 

the presence of construction workers (i.e., active work zones) as well as traffic conditions 

around the work zone. Individual and network-level work zone statistics including counts and 

durations are provided in a dashboard format.  

● This research also developed a Scaled Safety Risk Index (SSRI), using multisource data, statistical 

modeling, and machine learning techniques, as a comprehensive safety risk index for traffic 

planning. A unique data source used in this approach is the crowd sourced CAV-based near miss 

data extracted using computer vision technology.  

• A positive correlation was found between crashes and near misses, indicating the potential of 

using near miss data as supplemental safety data when crash information is not adequate.   

● Based on the work zone detection and SSRI algorithms, two highly interactive and user-friendly 

web-applications were built using microservice architecture. Automatic pipelines were 

developed for both applications to minimize manual efforts.  

● Cost estimations were provided for operating the applications on an individual computer 

($2,175 (one-time cost) + $2,860 (per year)), a local server ($3,025 (one-time cost) + $3,160 (per 

year)) or on a cloud-based server ($1,375 (one-time cost) + $4,885 (per year)). 

Each accomplishment detailed above demonstrates a substantial step forward in leveraging AI for 

improving urban traffic management and safety. This research not only provides valuable real-world 

applications but also showcases the potential for further developments in these areas. 

8.2 Discussion and Future Work 

This research project, while advancing computer vision technologies, has identified some limitations and 

corresponding potential areas as the directions for future work: 

• The current urban work zone detection model encounters difficulties distinguishing between 

construction workers and traffic enforcement agents, due to their similar attire such as yellow 

or orange safety vests. As the presence of construction workers is significant in identifying true 

work zones, any misclassification may lead to errors in work and non-work zone identification. 

Future work needs to address this challenge. Another area of concern is the methodology used 

for area estimation. While it works effectively when boundary equipment forms a closed 

enclosure, it struggles with work zones that utilize natural boundaries like road curbs or walls. 

Also, the estimation method assumes uniform heights for each object type, which can introduce 

bias. Future efforts should aim to enhance the model's versatility and accuracy. 
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• The SSRI model currently incorporates only crash records and near miss data as dynamic 

variables. While these can be updated frequently, other directly related safety variables, such as 

speeding tickets, were not prevalent in the test area. In addition, the SSRI currently serves as a 

one-time index for the study period as the sample near miss data is limited. In future iterations, 

we aim to develop the SSRI as a time-dependent algorithm, adjusting based on the user-selected 

study period. We also plan to expand its application to cover the entire city to incorporate other 

time variant variables, such as speeding tickets. 

These limitations open avenues for future work to refine the models and increase their applicability 

and accuracy in a wider range of scenarios. Periodic feedback from the advisory board provided an 

excellent communication channel to hone our research approach and enhance application features. 

Furthermore, the methodology proposed in this project offers valuable insights for potential future 

expansion of using computer vision techniques for other prioritized use cases (e.g., bike and scooter 

safety) in urban areas.  
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Appendix 

A.1 Correlation between VRU crash data and VRU near misses 

A.1.1 Correlation 

Figure 57 shows the correlation between VRU crash data and VRU near misses. For pedestrians and 

cyclists, the values of correlation coefficient are 0.18 and 0.11 respectively. This indicates that the VRU 

crash count and near misses have a weak positive linear relationship. 

 

  
(a) Pedestrian safety risk related variables (b) Cyclist safety risk related variables 

 

Figure 57. The correlation plots of VRU crash data and VRU near misses 

A.1.2 Spatial Correlation 

(1) Bivariate Global Moran’s I  
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Table 17 presents the Bivariate Global Moran’s I using k-nearest neighbor (k=8) for VRU crash data and 

near misses. All four bivariate global moran’s I are significant in p-value (<0.05) .These results indicate a 

statistically significant spatial correlation. 

 Table 17 Bivariate Global Moran’s I using K-nearest neighbor (k=8) for VRU crash data/near misses. 

Bivariate Global Moran’s I  I E(I) SD(I) Zi Pseudo p-value 

Pedestrian Crash-Near Miss 0.046 -0.0005 0.0089 5.1746 0.001 

Pedestrian Near Miss-Crash 0.046 -0.0005 0.0089 5.1402 0.001 

Cyclist Crash-Near Miss 0.025 -0.0005 0.0087 2.867 0.004 

Cyclist Near Miss-Crash 0.025 -0.0005 0.0085 2.942 0.002 

(2) Bivariate LISA Cluster Map 

Figure 58 shows the bivariate LISA results for the two pairs “Crash-Near Miss” and “Near Miss-Crash” for 

pedestrian and cyclist respectively. Both Bivariate LISA have more clusters with negative local spatial 

correlation than that with positive local spatial correlation. Overall, due to less VRU near miss events 

identified by the crowd sourced CAVs, the usage of VRU SSRI may be limited. 

  
(a) Pedestrian crash count-ME8 pedestrian near 

misses bivariate LISA 

(b) ME8 near misses - pedestrian crash count 

bivariate LISA 
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(c) Cyclist crash data-ME8 cyclist near misses 

bivariate LISA 

(d) ME8 cyclist near misses - cyclist crash data 

bivariate LISA 

 Figure 58. Bivariate LISA cluster map for VRU crash data and near misses (k-nearest neighbor, k=8)  

A.2 VRU SSRI 

A.2.1 VRU SSRI Calculation 

Based on the steps proposed in Section 4.4, two VRU SSRIs, which are Pedestrian SSRI and Cyclist SSRI 

were calculated. The main difference between VRU SSRI and SSRI is that VRU SSRI is using the crash 

count and near misses for a specific VRU. Table 18 and Table 19 present the variables that were used to 

calculate the SSRI and their parameters. 

 Table 18 Pedestrian SSRI Variables and Their Parameters. 

Variable Pedestrian 
Crash 

Road 
Length 

#intersections Population Commercial 
Land Used 
Rate 

ME8 
Near 
Misses 

#Bus 
Stops 

Open 
Area Land 
Used  
Rate 

#Subway 
Station 

Weight 1 0.271 0.243 0.181 0.166 0.045 0.044 0.028 0.023 

Sign + + + + + + + - + 
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 Table 19 Cyclist SSRI Variables and Their Parameters. 

Variable Cyclist 
Crash 

Road 
Length 

Population Residential 
Land Used Rate 

Commercial 
Land Used 
Rate 

#Bus Stops ME8 Near 
Misses 

Weight 1 0.425 0.248 0.164 0.088 0.048 0.027 

Sign + + + + + + + 

 

A.2.2 VRU SSRI Distribution 

The distributions of VRU SSRI are shown in Figure 59. For pedestrians, 9th avenue, 7th avenue, 2nd avenue 

and 34th street are the roadways that have two locations that are high risk pedestrian SSRI locations 

(within top 10), respectively. For Cyclist, 2nd avenue and 51st street both have three locations with high 

cyclist SSRI (within top 10). 

  

(a) Pedestrian SSRI (b) Cyclist SSRI 
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(a) Top 10 Pedestrian SSRI locations  
(highlighted in yellow) 

(b) Top 10 Cyclist SSRI locations 
(highlighted in yellow) 

 Figure 59. The distribution of VRU SSRI 
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