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Executive Summary 

The need for tools to evaluate urban freight policies is greater than ever before, as communities 

face a combination of a pandemic fallout on supply chains (Schofer et al., 2022); e-commerce 

surge (U.S. Department of Commerce, 2022); technological advances in urban deliveries (Davis 

and Figliozzi, 2013; Ulmer and Thomas, 2018; Giampoldaki et al., 2021); and innovations in urban 

policies (Campbell et al., 2018; Holguín-Veras et al., 2011a); all in an increasingly congested urban 

space with competing users. Conventional modeling tools for urban truck flows range from truck 

trip models to behavioral tour and agent simulation models (e.g. Chow et al., 2010; Hunt and 

Stefan, 2007; Wisetjindawat et al. 2006; Gatta and Marcucci, 2014; You et al., 2016). On their 

own, they can evaluate many policies related to urban goods movement. However, policies that 

relate to time-of-day traffic dynamics and interactions between commercial vehicle movements 

and passenger travel require models that are sensitive to these variables. Multiagent simulations 

of truck movements alone are not enough; multiagent simulations that capture the shifting of 

departure times of travelers and trucks in highly congested locations and time periods are 

needed. There are several multiagent simulation platforms in the literature that include both 

passenger and freight simulation. Unfortunately, they simulate individual establishment and 

carrier decisions like supplier selection and shipment size selection and require such disaggregate 

data. In general, such data are not available to public policymakers. 

As a result of these motivations, we collaborated with the New York City Department of 

Transportation (NYC DOT) to address the problems in several ways. First, we explored routing 

app designs that can be of use to NYC DOT in informing truck drivers in NYC. This involved 

developing a prototype app and engaging in a hackathon in Fall 2022 to refine the visualization 

of the routing data. Second, we leveraged public data to construct a synthetic population of 

trucks that can be incorporated into a multiagent simulation that allows for dynamic passenger 

and commercial vehicle interactions. The synthetic truck population, which includes schedules of 

trip chains for each individual truck, will be incorporated into MATSim-NYC (He et al., 2021). 

Third, we proposed a new model for predicting zonal residential parcel delivery volumes and VMT 

that is applicable to large-scale scenarios and validate such a model using data from New York 

City (NYC).  

To generate the synthetic freight population, we used a method that combines the freight trip 

generation, distribution via truck tour set generation and entropy maximizing flow synthesis, 

after which individual truck itineraries can be sampled similarly to a passenger synthetic 

population. Freight trips are estimated in three steps. First, freight trips produced and attracted 
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at the establishments level are quantified. Then, inbound/outbound freight trip flows to/from 

the area of study via gateways are included to have a broader understanding of possible OD 

movements. Finally, relationships between industries are appended based on supply/production 

ties to the origin or destination of freight trips.  

Unfortunately, we do not have Freight Trip Attraction (FTA) or Freight Trip Production (FTP) data 

by industry at the establishment level to estimate forecast models with. However, we can 

estimate it based upon the methodology and parameters specified in National Cooperative 

Freight Research Program Report 25 (NCFRP 25) (Holguín-Veras et al., 2017). To achieve the level 

of granularity needed, employment is imputed to an establishment level in the study area and 

assigned characteristics based upon building use or areal information as necessary which was 

sourced from the NYC PLUTO dataset and the American Census Survey. Employment data was 

aggregated to the borough level for validation. It was acceptably close for each as well as at the 

citywide level where it predicted 4.63M employees which is a 7.5% overestimate of the number 

reported by the Census.   

To account for the role of external regions on the study area, we need to consider the 

incoming/outgoing flow of trucks with origins and destinations such as other parts of the United 

States or the world. The Freight Analysis Framework 5 (FAF5) (FHWA, 2022; U.S. BTS, 2017) was 

used to understand regional level flows, and then 2020 Census data was used to subtract out the 

surrounding areas from NYC. To address long-haul trips, heavy trucks (FHWA class 8+) at 

gateways were assumed to be destined directly for a warehouse while medium trucks (FHWA 

class 5-7) were assumed to be making tour-based deliveries.  

Freight Trips Generated (FTG) were then calculated and aggregated at the borough level, added 

to the gateway FTG, and compared against NCFRP25 for validation. Our total of 667k truck trips 

was roughly 7% lower than their estimation which again is seen to largely agree. FTP and FTA did 

not naturally equal each other, but for the purposes of the distribution algorithm, they must be. 

In general FTP was scaled to be equal to FTA. This process resulted in 725k daily truck trips 

generated in NYC, which is 7% more and agrees with the NCFRP25 estimate to within 1%.   

The tour sets were generated first by calculating an Industry specific length, then assigning an 

origin, then assigning destinations which promoted clustering. 10,000 tours were generated for 

each of the 47 industries (resulting in 470,000 tours). Flow is then assigned onto the tours using 

entropy maximization. The flows are constrained to the freight demands of each custom 

transportation analysis zone (TAZ), the average length for each tour, functional constraints for 
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the model, and realism constraints such as positive, whole numbers of trucks. Due to factors such 

as the model’s nonlinearity and the size of the constraint matrices, traditional solvers like Gurobi 

or Scipy could not be used. An iterative balancing algorithm which proportionally reassigns FTP 

then FTA until the change drops below a threshold was designed and applied. It performed 

significantly faster than previous methods. A representative industry took 6 iterations to 

converge below the threshold.  

After the tour flow assignment process, validation begins. Routing for the trucks was done on a 

cutout of NYC from OpenStreetMap with NYC DOT providing truck specific data and Uber 

Movement dataset (2022) providing link-level travel times by time of day. Two validation 

frameworks were used, one specified in an NYC DOT report, and another specified by this project. 

The first factor calibrated was the weighting factor in the origin destination generation process. 

0.75 produced the best results across both validation frameworks. Using both frameworks 

together show an overestimation of trips between Manhattan and Brooklyn as well as Manhattan 

to Queens, but all other borough boundaries are well estimated. The Manhattan/ Brooklyn is the 

least accurate boundary overpredicting two-way daily truck trips by 21,464, or +145% of 

observed total flows of 14,777. The Queens/Bronx boundary is the most accurate at 1566 truck 

trips overestimated or +5%. Note that these are preliminary assignments; more detailed and 

accurate assignments will be made through MATSim in a subsequent study which will account 

for congestion effects on individual bridges more properly. The goal at this stage is to make sure 

the total volumes across the city on average are reasonable.   

Calibrated tour flows were then converted to the synthetic freight population. To do this, tour 

flows were assigned characteristics such as starting times, service times, and vehicle weight 

which were derived from real world data. Link-level and tour level quantities were tabulated such 

as travel times and emissions. Analysis of the synthetic population shows that the total estimated 

daily VHT in New York City is 2.49M veh-hours with 0.65M veh-hours of that being service time. 

The total estimated daily emission of CO2 is 5640 metric tons of carbon equivalent (MTCE). A case 

study was then considered where the vehicle capacity was shrunk by 20% to examine the impact 

on congestion and bridge damage. While VHT and CO2 emissions increased to 3.12M veh-hours 

and 7.05 MTCE, damage to both the Manhattan Bridge and Queens Midtown Tunnel in both 

directions fell between 45 and 47% even though flow increased between 24 and 25%.  

Additionally, this project considered parcel deliveries because the e-commerce industry has 

experienced significant growth in the past decade, particularly post-COVID. Global e-commerce 

sales grew by 22.7% from 2020 to 2021 (Statista, 2022), and are projected to increase by more 
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than 90% from 2020 to 2026. E-commerce sales experienced a 50.5% increase from 2019 to 2021 

in the US, and more than 14.5% of all retail sales in 2021 came from e-commerce (DOC, 2022). 

The parcel delivery sector has also experienced fast expansion to accommodate such growth. 

However, there is a lack of study that properly evaluates its social and environmental impacts at 

a large scale. A model is proposed to analyze such impacts. A parcel generation process is 

presented to convert public data into residential parcel volumes and stops. A continuous 

approximation model is fitted to estimate the length of parcel service tours. The two processes 

can be used collaboratively to estimate the overall impact of parcel delivery operations.  

A case study is conducted in New York City (NYC) using 2021 as the data year. 1.91 million daily 

residential parcels are estimated using the parcel generation process, which matches the volume 

presented in Komanoff (2021). The continuous approximation model parameters have R2 values 

of 98% or higher. By using the model, 61.4 thousand daily vehicle-miles traveled (VMT) are 

estimated, which contributed to 0.05% of total daily VMT in NYC corresponding to 14.4 metric 

tons of carbon equivalent (MTCE) emissions per day. By comparing the results between 2020 and 

2021, COVID-19 is estimated to contribute to an increase in parcel deliveries that led to up to 

1064.3 MTCE of annual greenhouse gas (GHG) emissions in NYC (which could power 532 standard 

US households for a year).  

When coming to the potential application of cargo bike delivery, the existing bike lane 

infrastructure can support the substitution of 17% of parcel deliveries by cargo bikes, which 

would reduce VMT by 11%. For example, adding 1.9 miles of bike lanes to connect Amazon 

facilities can expand their cargo bike substitution benefit from a 5% VMT reduction up to a 30% 

reduction. Only 17.4 miles of additional bike lanes would connect all major carrier facilities, 

allowing for a parcel delivery substitution citywide which could increase from 17% to 34% via 

cargo bike and save an additional 2.3 MTCE per day. Cargo bike prioritization can be set by 

decision-makers to reduce GHG emissions for environmental justice neighborhoods including 

Harlem, Sunset Park, and Bushwick. 

Finally, this project set out to build a truck routing app for New York City. Originally pitched as a 

data dashboard, it evolved into a routing app through conversations with NYC DOT about their 

data inventory and their needs. This product uniquely combines first party data from NYC DOT 

about the built environment and packages into an open-source tool. By providing dynamic 

routing to trucks that encourages them to use designated truck routes, this tool will help meet 

the goals of increased efficiency and reduced emissions, noise pollution, and bridge strikes (NYC 

DOT 2021).  The app works by connecting a front-end user interface that prompts a driver for 
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information about their destinations and their vehicle to a server which hosts script that performs 

the calculations via a python script accessing the ArcGIS platform via the provided APIs. That 

information is returned and visualized with the tool created by the Hackathon. The Hackathon 

was a one-week virtual competition which began at TransportationCamp NYC 2022 in a hybrid 

format and concluded in a virtual closing ceremony. At both events, interested members of the 

community contributed valuable conversations and feedback about potential strengths, 

weaknesses, challenges, and threats to the project. The winning team produced a 3D visualizer 

which has successfully been integrated into the main product. The team is leading ongoing efforts 

to get the product into the hands of interested parties through the NYC trucking community and 

to continue to invest in this tool because of the potential it could have to improve the ecosystem.  

This project has resulted in presentations given at TU Delft and ITS-NY as well as a virtual 

presentation for the World Conference on Transportation Research. . Four papers were prepared 

from the synthetic population development. The work has supported several PhD students for 

portions of their dissertations, NYU Tandon School of Engineering’s Undergraduate Summer 

Research Program, and their Applied Research Innovations in Science and Engineering (ARISE) 

program. It was used in graduate and undergraduate courses by Professor Chow. It was 

presented publicly at the NYU Tandon Research Expo, the C2SMART Student Learning Hub, 

TransportationCamp NYC 2022, and a demonstration for NYC DOT is being planned along with a 

digestible app summary to be broadly released.  

The major limitations for this project center around data and timing. For the freight truck portion, 

a data year of 2019 was chosen because it was the last year that consistent and reliable data was 

available. The parcel bike portion was able to use 2021, but in both cases, the rapidly changing 

freight delivery landscape in New York City has altered some of the realities. For example, new 

distribution centers have come online in the last two years. Additionally, the freight truck section 

does overestimate the number of trucks crossing the Manhattan-Brooklyn boundary and 

Manhattan-Queens boundary. The size of the error is deemed acceptable for work, and future 

efforts are likely to reduce this error.   
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1. Introduction

1.1. Project background 

E-commerce sales have grown significantly around the globe, which further gained momentum

during the global pandemic since 2020. Global e-commerce sales grew by 22.7% from 2020 to 

2021 (Statista, 2022), and are projected to increase by more than 90% from 2020 to 2026. E-

commerce sales experienced a 50.5% increase from 2019 to 2021 in the US, and more than 14.5% 

of all retail sales in 2021 in the US came from e-commerce (US Department of Commerce, 2022). 

E-commerce sales are projected to keep such momentum in the future, which could occupy more

than 23.6% of all retail sales in 2025 in the US (Davidkhanian. 2021). 

The need for tools to evaluate urban freight policies is greater than ever before, as communities 

face a combination of a pandemic fallout on supply chains (Schofer et al., 2022); e-commerce 

surge (U.S. Department of Commerce, 2022); technological advances in urban deliveries (Davis 

and Figliozzi, 2013; Ulmer and Thomas, 2018; Giampoldaki et al., 2021); and innovations in urban 

policies (Campbell et al., 2018; Holguín-Veras et al., 2011a); all in an increasingly congested urban 

space with competing users. Conventional modeling tools for urban truck flows range from truck 

trip models to behavioral tour and agent simulation models (e.g. Chow et al., 2010; Hunt and 

Stefan, 2007; Wisetjindawat et al. 2006; Gatta and Marcucci, 2014; You et al., 2016). On their 

own, they can evaluate many policies related to urban goods movement.  

However, policies that relate to time-of-day traffic dynamics and interactions between 

commercial vehicle movements and passenger travel require models that are sensitive to these 

variables. For example, the Off-Hour Deliveries” program (Holguín-Veras et al., 2011a) is being 

expanded upon by NYC DOT and congestion pricing is being implemented for New York City (NYC) 

in the near future (He et al., 2021). Other examples include electric charging infrastructure 

planning that allows both electric trucks, cargo bikes, and passenger vehicles share usage (Wang 

et al., 2019); allocation of urban consolidation centers that replace other land uses; or regulating 

the roadways for dedicated truck routes. None of these policies can be properly evaluated using 

conventional modeling tools that ignore passenger travel conflicts with trucks under dynamic 

congestion. Multiagent simulations of truck movements alone are not enough; multiagent 

simulations that capture the shifting of departure times of travelers and trucks in highly 

congested locations and time periods are needed. 
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There are several multiagent simulation platforms in the literature that include both passenger 

and freight simulation. MATSim (Horni et al., 2016) has been used to evaluate truck activities 

(Joubert et al., 2012; van Heerden and Joubert, 2014) and is capable of modeling multiple classes 

of vehicles and agents on the road network (Schröder and Liedtke, 2017). Mommens et al. (2018) 

in fact used MATSim to evaluate off-hour deliveries. POLARIS (Auld et al., 2016) is currently being 

extended to capture freight movements (Stinson et al., 2020; Stinson and Mohammadian, 2022). 

MASS-GT simulates the freight shipper and receiver decisions as well as the carriers (de Bok and 

Tavasszy, 2018). SimMobility (Azevedo et al., 2017) has been used to model both passengers and 

trucks using real data from Singapore (Sakai et al., 2020). Thoen et al. (2020) constructed tours 

from at the shipment level in a bottom-up approach. As significant as these latter works are, they 

simulate individual establishment and carrier decisions like supplier selection and shipment size 

selection and require such disaggregate data. In general, such data are not available to public 

policymakers. 

An example of this limited data setting is with parcel deliveries. Parcel delivery service is 

commonly used as the final segment of the logistics operation in e-commerce. Increasing the 

capacity of parcel delivery services is crucial to properly serve the growing customer base. 

However, more parcel delivery vehicles entering the service would put more pressure on the 

already congested road network in densely populated urban areas. The added delivery vehicles 

would induce more vehicle-miles-traveled (VMT), producing higher levels of emissions with 

internal combustion engine vehicles. Even though the parcel delivery sector is becoming more 

critical, the literature on quantifying its impact on a large scale remains limited. Without such 

quantification, it would prevent us from gaining insight into managerial strategies and policies in 

this important sector. For example: how much greenhouse gas (GHG) emissions will be produced 

by the delivery service alone, how much impact do outside factors such as COVID-19 have, and 

what benefits would the deployment of such service alternatives as cargo bikes bring in terms of 

social welfare? 

Currently, four major companies, the United States Parcel Service (USPS), United Parcel Service 

(UPS), Federal Express (FedEx), and Amazon Logistics (Amazon), are dominating the parcel 

delivery industry in the US. The combined parcel volume handled by the four companies occupies 

nearly 98% of the US parcel shipment in 2021 (Pitney Bowes, 2022). To restrict the impact of 

added delivery volume on the road network and the environment, pilot programs have been 

conducted by six companies including Amazon, DHL, UPS, FedEx, Reef Technology, and NPD 

Logistics (NYC DOT, 2021). However, they are still in their preliminary phases and the full 
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deployment would require years of tests. Without detailed operation data, there is a strong need 

to develop a model to properly evaluate these new parcel service strategies from a planning 

perspective on a large scale. 

Furthermore, conversations with NYC DOT staff indicated that a major challenge is the lack of 

digital, dynamic, publicly owned, truck-specific routing through the city. Their current practice 

involves distribution of a pdf updated map roughly every 3-5 years. Free routing services like 

Google Maps or Waze fail to meet this need because they lack the truck-specific information. 

Those apps assume a standard passenger vehicle which is not subject to the same height, weight, 

or route restrictions as trucks are. While private routing platforms are available, they are costly. 

NYC DOT makes available the truck route data in shapefiles, but to our knowledge, no one has 

yet built a freely available routing tool on top of them. NYC DOT is examining the feasibility of 

developing a free, publicly accessible routing tool, to be able to integrate it with their other digital 

services to maximize benefits to users, and to analyze the data collected to make further 

improvements to the truck ecosystem in New York City.  

As a result of these motivations, we collaborated with NYC DOT to address the problems in 

several ways. First, we explored routing app designs that can be of use to NYC DOT in informing 

truck drivers in NYC. This involved developing a prototype app and engaging in a hackathon in 

Fall 2022 to refine the visualization of the routing data.  

Second, we make use of only public data to construct a synthetic population of trucks that can 

be incorporated into a multiagent simulation that allows for dynamic passenger and commercial 

vehicle interactions. The proposed methodology integrates two earlier works in the literature: 

freight trip generation (Holguín-Veras et al., 2017) and an aggregate tour-based truck distribution 

model using a variant of the tour-based entropy maximization methods in the literature (e.g. 

Sánchez-Díaz et al., 2015; You and Ritchie, 2019) that can be calibrated to match observed 

average number of stops and borough-level crossing volumes. The proposed method is applied 

to NYC, the first of its kind for NYC, resulting in an original public data set for policymakers. The 

model includes freight truck productions and attractions within NYC and at designated gateways, 

split by industry and vehicle class and cognizant of make-use relations, and a set of tours that are 

validated against average annual daily truck trips (AADTT). A scenario involving the supply chain 

disruption of one industry on truck flows before and after reallocation of fleet resources is 

evaluated. The synthetic truck population, which includes schedules of trip chains for each 

individual truck, will be incorporated into MATSim-NYC (He et al., 2021).  
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Third, we propose a new model for predicting zonal residential parcel delivery volumes and VMT 

that is applicable to large-scale scenarios and validate such a model using data from New York 

City (NYC). We use the model to quantify the impacts of increased parcel delivery due to the 

COVID-19 pandemic on greenhouse gas (GHG) emissions. We identify all viable depots for 

substituting cargo bike deliveries using NYC’s existing bike infrastructure and apply the model to 

investigate the benefit of such a substitution.  This includes estimating the additional bike lane 

infrastructure needed to give eligible depots access and quantifying the impact of substituting 

trucks with cargo bikes on VMT and GHG emissions. These analyses are done for four major 

companies across two seasons’ days. While everything considered in this work is a full sized 

depot, future efforts will consider the addition of microhubs (NYC DOT 2023).  

1.2. Research Objectives 

The study consisted of three objectives. The first is to develop a prototype truck routing app that 

makes use of restriction data from NYC DOT to give more useful directions to truck drivers than 

what they can get with a conventional driving directions app like Google Maps. The second is to 

develop a citywide dataset of truck network flows, one that relates changes to truck routes to 

changes in truck tours or to time-of-day congestion pricing policies, for example. This latter 

objective is achieved using the following framework in Figure 1.1. 

Figure 1.1 Project’s data flow framework. 

Freight production and 
attraction 

Truck tours by vehicle 
class 

Assignment onto time-
of-day road network 

• Establishment data

• Freight OD data

• Time of day distribution

Synthetic firms with: 
• delivery agendas

• simulated time windows

• simulated fleet mixes

• Truck flows by class

• Truck departure times
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The first arrow is captured using a synthetic population extension which will require a new tour-

based freight model. The second arrow is captured with the MATSim simulation platform. The 

project is an application of MATSim-NYC for NYC DOT that also expands on the literature on urban 

freight network modeling.  

The third objective is the development and calibration of a large-scale analytical model for parcel 

deliveries for NYC. 

1.3. Report organization 

The rest of this report is organized as follows. Section 2 describes the process of combining all 

the sources of open data into the New York City Commodity Flow. Section 3 details how the 

freight tours were created and loaded with flow, including a case study which examines the 

impact of altering truck size on VHT, GHG emissions, and average loads on the bridge crossings. 

Section 4 details the development of the analytical parcel delivery model. Section 5 outlines the 

creation of the Truck Routing App and what the next steps could be. Section 6 concludes the 

report with ways in which this work has been disseminated and future plans for its components. 
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2. Developing Zonal Commodity Flows for NYC

To better understand this model, it will be helpful to examine the transportation planning 

process. The traditional four step method is commonly described as trip generation, trip 

assignment, mode choice, and route choices.  For each zone of study, the number of trips 

originating and terminating are calculated. These trip ends are then matched. Then vehicle type 

is decided, and then finally the specific links to cross the network are selected. Chow et al. (2010) 

examines the planning process as it applies to freight demand and classifies several types of 

models based upon their data inputs, methodologies, and ultimate aims. It recommends two 

advanced types of models, logistic and vehicle-touring, as being the most beneficial to 

researchers and practitioners. Logistic models capture supply chain interactions by making 

behavioral distinctions which can apply to many decision makers with the unit of analysis being 

a commodity or shipment. Vehicle-touring models focus on the vehicle and try to minimize 

logistic costs to predict more accurate movements. The model we propose synthesizes these two 

methods with innovative techniques to overcome the data challenges which had previously 

prevented this approach.   

A method is needed to generate a synthetic population of trucks that can feed into a multiagent 

simulation like MATSim, based on aggregate modeling methods and public data. We propose a 

method that combines the freight trip generation, distribution via truck tour set generation and 

entropy maximizing flow synthesis, after which individual truck itineraries can be sampled 

similarly to a passenger synthetic population. The overall process is shown in Figure 2.1.  
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Figure 2.1 Overview of synthetic truck population generation from socioeconomic and 

aggregate truck flow data. 

An initial step generates the trip productions and attractions, divided by internal zones and 

external gateways. Freight trip productions (FTPs) and attractions (FTAs) are further connected 

to each other via make/use tables to capture supply chain effects, i.e. scenarios involving the 

reduction in one industry can result in impacts to other industries (see Ranaiefar et al. 2013, for 

example supply chain scenarios). A tour set is generated per industrwfy, which is then assigned 

flows using maximum entropy to fit the FTPs/FTAs. Gateway trips are divided between smaller 

truck tours versus larger truckload deliveries to warehouses within the city. Truck tours are 

sampled from a set to generate the tours for the truck population, after which schedules can be 

synthesized for each truck agent. All forecasted data reflect a base year of 2019, prior to the start 

of the COVID-19 pandemic. 

2.1 Generating Freight Trip Productions/Attractions (FTPs/FTAs) 

Freight trips are estimated in three steps. First, freight trips produced and attracted at the 

establishments level are quantified. Then, inbound/outbound freight trip flows to/from the area 

of study via gateways are included to have a broader understanding of possible OD movements. 

Finally, relationships between industries are appended based on supply/production ties to the 
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origin or destination of freight trips. A large number of data sources are used for this effort; a 

summary of their uses is provided in Table 2.1. For more details about public data sources, see 

Tok et al. (2011). 

FTP/FTA Regression models at the establishment level 

FTPs and FTAs (collectively, Freight Trips Generated, i.e. FTGs) are forecasted for each NAICS 

industry at the 2-digit code and for each zone in NYC. A zone system based on aggregations of 

census tracts is used based on ensuring consistency with zones used for passenger synthesis 

(labeled as “optimized census zones” in Table 2.1; see Liu et al., 2023).  

In total there are twenty-four 2-digit NAICS codes, divided between “freight-intensive sectors” 

(FIS) and non-freight intensive sectors (non-FIS), of which we further disaggregated out to a total 

of 78 industries (some at 3-digit level detail). FIS NAICS codes span from 21 to 49 and 72, while 

non-FIS codes span from 51 to 81 (except 72). FIS include mining, manufacturing, retail trade, 

wholesale trade, warehousing, and good services. The non-FIS trips include public administration, 

offices, health, education, entertainment, and information. We do not have FTA/FTP data by 

industry at the establishment level to estimate forecast models with. However, NCFRP25 

provides estimated parameters for forecast models (see Eqs. (2.1) – (2.4)) drawn from microdata 

taken across the Commodity Flow Survey, so they are used directly.  
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Table 2.1 Data inputs and descriptions. 

Data Source Author Year Description Use 

FT
P

/F
TA

 E
st

im
at

io
n

 

NCFRP-25 
Report 37 

National Academies 
of Science, 

Engineering, and 
Medicine 

2016 

Guidebook providing establishment-
level models to estimate Freight Trip 
Generation (FTG), Freight Production 
(FP), and Service Trip Attraction (STA) 

Parameters for linear and non-
linear models for FP/FA and 

FTP/FTA  

Census Tract 
NTA/PUMA 

Equivalencies 

NYC - Department 
of City Planning 

2010 

Relationship between census tracts, 
Neighborhood Tabulation Areas 

(NTAs), and Public Use Microdata 
Areas (PUMAs) 

Convert lot level to census 
tract level 

American 
Census Survey 

(ACS) 
Census Bureau 2018 

Gives the number of employees by 2-
digit NAICS industry at the census 

tract level 

Number of employees by 2-
digit NAICS industry at the 

census tract level 

County Business 
Patterns (CBP) 

Census Bureau 2019 
Gives the number of employees by 2-

digit NAICS industry at the zip code 
level 

Zip code level employment for 
NYC's landmarks as defined by 

Jaller et al. (2015) 

Proprietary 
Zones 

C2SMART 2022 Aggregated census tract districts 
Zone system used for 

generating FTPs and FTAs 

G
at

ew
ay

s 
&

 S
ti

m
u

la
ti

o
n

 

Freight Analysis 
Framework (V5) 

FHWA - Bureau of 
Transportation 

Statistics 
2019 

Complete picture of the flow of 
freight by all forms of transportation 

between states and major urban 
regions (based on the Census 

Bureau's CFS) 

In/Out freight flow by 2-digit 
NAICS industry to and from 

NYC Metropolitan Area 

Proposed 
Payload Factors 

FHWA - Bureau of 
Transportation 

Statistics 
2017 

Proposed Freight Analysis Framework 
payload factors for single unit and 
combination unit trucks by SCTG 

commodity type 

Splits freight flow to SU and CU 
to the number of trucks 

traveling to and from NYC 

Mountain Plains 
Consortium 13-

259 
US DOT 2013 

2-digit NAICS and 2-digit SCTG cross
referenced 

Converts SCTG to 2-digit NAICS 
industry 

American 
Census Survey 

Census Bureau 2018 
Gives the number of employees by 2-

digit NAICS industry at the county 
tract level 

Subtracts FTP/FTA from 
counties in the NYC 

Metropolitan Area to get real 
freight flow from and to NYC 

Truck Toll 
Volumes 

NYMTC 2007 

Movement of truck traffic over toll 
bridges and crossing between New 
York City and New Jersey during the 

years 2006 and 2007  

Converts Freight Analysis 
Framework payload factors to 

NYC specifics 

Sy
n

th
et

ic
 

Fr
ei

gh
t 

Movement Uber 2019 Average speed of Uber in NYC 
Determine travel time on 
each link of the synthetic 

freight population 
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To achieve the level of granularity needed, employment is imputed to an establishment level in 

the study area and assigned characteristics based upon building use or areal information as 

necessary. Using PLUTO data, it was assumed that one establishment fills an entire lot. Each lot 

was synthesized with a 2-digit NAICS industry based on the lot’s area type, building class, and the 

Public Use Microdata Areas (PUMA) worker distribution occupation from the American Census 

Survey (ACS) (US Census Bureau, 2019). Equivalencies between the census tract and PUMA 

standards were determined using the conversion key provided by the New York City Department 

of City Planning (NYC Department of City Planning, 2010). Employment data was then aggregated 

to the PUMA level because the margin of error at the census tract level was too high.  Each lot 

was assigned an industry based on the lot area type and building class (see appendix C of PLUTO). 

Next, the number of employees was determined by multiplying the area of the lot building type, 

area of the PUMA total building type, and the PUMA employment distribution by 2-digit NAICS. 

The employment was corrected using the data from County Business Patterns (CBP) for unique 

buildings in Manhattan that have a unique zip code (ex. Empire State Building). The list of such 

landmarks can be found in Jaller et al. (2015). The PLUTO data and employment heatmap for NYC 

are shown in Figure 2.2. This dataset provides the establishment-level input for applying the 

models in Eqs. (2.1) – (2.4). 

Linear 𝐹𝑖 = 𝛼 + 𝛽𝐸𝑖 (2.1) 

Non-Linear 𝐹𝑖 = 𝜑𝐸𝑖
𝛾 (2.2) 

Hybrid 

𝑓𝑖 = 𝛼∗𝐸𝑖
𝛽

𝐹𝑖 = 𝛼∗𝑓𝑖
𝜆

(2.3) 

𝐹𝑖 = 𝜑𝐸𝑖
𝛾 (2.4) 

Where, 

𝐹𝑖 is the FTG (FTA or FTP) metric for establishment 𝑖; 
𝑓𝑖 is the FG (FA or FP) metric for establishment 𝑖; 
𝐸𝑖 is the employment at establishment 𝑖; 
𝛼, 𝛽, 𝜑, 𝛾, 𝜆 are parameters. 
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(a)



12 Quantifying and Visualizing City Truck Route Network Efficiency 

Using a Virtual Testbed 

(b) 

Figure 2.2. (a) PLUTO data in NYC; (b) synthesized employment heatmap. 

As dictated by NCFRP25, the linear models Eq. (2.1) was used for non-intensive freight industries, 

and the non-linear models are utilized for the freight intensive ones. The non-linear models are 

either a direct function of employment Eq. (2.2) or a function of freight generated, which is a 

function of employment Eq. (2.3). The hybrid model Eq. (2.3 -2.4) involves using the two above 

non-linear models, with a threshold for switching between them based on whether the FTA/FTP 

function of freight generated (FA, FP) is greater than the FTA/FTP function of employment. The 

hybrid model is preferred due to the underestimation or overestimation of freight for small 

establishments. From an examination of the model goodness of fit metrics in NCFRP25, the non-
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FIS forecast models are not reliable enough and represent less than 5% of the total FTG, so we 

exclude them. The final set of 49 FIS industries covered and the type of model used for the FTPs 

and FTAs are summarized in Table 2.2.  

Table 2.2 Summary of FTP/FTA model selection by FIS industry 

Industry Model Type Details Hybrid Threshold NCFRP-25 Ref 

FTA 

23, 31, 
33, 45, 

72 
Non-Linear FTA(Veh/Day) N/A Table 10 

21, 22, 
32, 42, 
44, 48, 

49 

Hybrid 

FTA(Veh/Day) as a 
Function of FA 

(Lbs/Day) & FTA 
(Veh/Day) 

FTA_NA_NL ≤ 
FTA_NL FTA_FA_NL 

> FTA_NL

Table 17/21 & 
Table 10 

FTP 

21, 31, 
32, 33, 
42,44, 

45 

Non-Linear FTP(Veh/Day) NA Table 12 

22, 23, 
48, 49, 

72 
Hybrid 

FTP(Veh/Day) as a 
Function of FP 

(Lbs/Day) & FTP 
(Veh/Day) 

FTP_FP_NL≤FTP_NL 
FTP_FP_NL>FTP_NL 

Table 19/23 & 
Table 12 
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Once all the FTPs/FTAs are forecasted by industry and establishment, they are aggregated to 

zones using Cochran’s (1977) sample size formulas in Eq. (2.3) – (2.4) (Holguín-Veras et al., 2017). 

𝑓̅ =
∑ 𝑓𝑖

𝑛
𝑖=1

𝑛
(2.5) 

𝐹 = 𝑁𝑓̅ (2.6) 

where 

𝐹 is the aggregate generation of FTG 

𝑓̅ is the average FTG from a sample of size 𝑛; 

𝑁 is the total number of establishments in the study area. 

Gateways 

To account for the role of external regions on the study area, we need to consider the 

incoming/outgoing flow of trucks with origins and destinations such as other parts of the United 

States or the world. First, gateway locations need to be determined to allow for a place to capture 

those freight movements.  Natural choices are freeways, bridges, and tunnels because of their 

regional funneling effect. Final gateway selections are shown in Figure 2.3 and Figure 2.7b. 

Freight transmitted to those locations was calculated into the respective zone’s FTP/FTA 

simulating the loading and unloading of the freight onto trucks which would then be assigned 

normally.  

Once gateways are chosen, freight must be assigned to them broken down by commodity type. 

Using Freight Analysis Framework 5 (FAF5 2017), we determine the quantity of commodity 

movements in the NYC metropolitan area. The FAF5 data units are converted from Standard 

Classification of Transported Good (SCTG) and tons to 2-digit NAICS and truck trips using the 

Mountain-Plains Region Consortium NAICS-SCTG cross reference (Mitra et al., 2013) and the 

proposed FAF4 (Lindsey et al., 2020) payload factors. Gateways are assigned to each OD pair 

based on their origin and destination location. Using Google Maps API, we empirically determine 

which gateway is most accessible to each external region. It is important to note that FAF5 

considers meta regions such as urban areas or states. Hence, it is necessary to subtract the 

difference between the FAF5 studied area and the original zone of interest. To do so in our 

project, the excess FTA/FTP from the surrounding areas (which includes other portions of New 
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York state, New Jersey, Connecticut, and Pennsylvania) was estimated at the county level by 

inputting the Quarterly Census of Employment and Wage data set (US Bureau of Labor Statistics 

2021) into the same process used to generate the New York City FTA/FTP. 

The freight flows from FAF5 were grouped into four meta-regions that follow gateway 

attributions: New England, New York State, Long Island, and Other U.S/Foreign. Finally, after 

assigning the gateways for each OD pair, we subtracted the FTG in metro area that fell outside 

the city itself. For these counties (Nassau, Suffolk, Westchester, Putnam, Rockland, and Duchess), 

FTG was computed at the county level using the Quarterly Census of Employment and Wages 

and the NCFRP25. 

As an example, Figure 2.3 depicts the spatial distribution of FTA/FTP for the truck transportation 

subsector industry (484). We can see that the major production zones within the city include 

Long Island City, the Brooklyn Naval Yard, and both airports, JFK and LGA. Each of those are major 

modal change locations so the model captures that as FTP at those locations. The attraction zones 

are mostly within Manhattan as expected, but there are also hotspots in Downtown Brooklyn, 

Flushing, and more. These data can be further explored on the C2SMART Mobility Data 

Dashboard under the “freight” category (C2SMARTER 2022).  

Figure 2.3 Forecasted FTA/FTP zonal distribution with overlaid gateways (triangles) for NAICS 

484 industry truck transportation. 
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Long-haul Trip Redistribution 

For a given region, freight trips consist of Internal-to-Internal (I-I), Internal-to-External and vice 

versa (E-I, I-E), and External-to-External (E-E) trips. Gateways are defined so that E-I and I-E trips 

are assigned to gateway-based trips. These gateway trips are divided between smaller truck tours 

making direct deliveries in a region from outside, versus larger truckload deliveries made to 

warehouses within the region from which LTL trips are then made. The Freight Analysis 

Framework (FAF) (FHWA, 2022; U.S. BTS, 2017), which is a refined data set from the Census 

Commodity Flow Survey (CFS) (U.S. BTS, 2012), is used to generate the E-I and I-E trips. E-E trips 

are ignored unless they clearly cross through the region (such as continental U.S. to Long Island 

through NYC). 

Long haul trips, E-I/I-E, differ from local urban delivery trips, I-I. Whereas the latter behave as 

long tours visiting multiple stops throughout the day, long haul trips are more likely direct, 

truckload trips that deposit all the load at a warehouse (Chow and Regan, 2010). For a 

metropolitan study area, these trips would typically be generated from a gateway to visit a 

warehouse within the area, and then depart back to the gateway directly.  

For the gateways, the unit of tons in FAF5 has been converted using the FAF4 payload factors to 

trucks corrected with the NYMTC Truck Toll Volumes (Hrabowska et al., 2007) to determine the 

number of equivalent single units (SU) and combined units (CU) by SCTG, also referred to as 

medium and heavy trucks, respectively. Medium trucks are vehicles of FWHA class 5, 6, or 7. 

Heavy trucks are anything class 8 and above. Trips to and from gateways are split between 

medium trucks assumed to make delivery tours (80%) and heavy trucks making truckload trips 

direct to warehouses (20%) based on truck tolling data from NYMTC (Hrabowska et al., 2007). 

These do not include parcel delivery trucks like the sprinter vans used by Amazon, as they are not 

flagged in the truck counts reported by AADTT sources. 

The top 20 zones in terms of NAICS Industry 48 (warehouse and trucking) were designated as 

“warehouse zones”, and all the long-haul trips were routed directly between a warehouse zone 

and a gateway. The data year is 2019, so warehouses which have come online since then would 

not be reflected in this process. To maintain conservation of trips, the FTP/FTA were subtracted 

from the gateways and added to the warehouse zones on a per industry code basis where they 

were then normally assigned to tour flows. The warehouse zone locations are shown in Figure 

2.4.  
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Figure 2.4 Location of zones with Inbound (left) and Outbound (right) FTG warehouses. 

2.2 Scenario Data 

The project study area encompasses the 5 boroughs of New York City with 9 gateways (gateway 

locations indicated in Figure 2.3 and Figure 2.7b), 4 between Long Island and NYC, 2 between the 

Bronx and upstate, 2 between New Jersey and Manhattan, and 1 between New Jersey and Staten 

Island. For zones, we use proprietary zones (Liu et al., 2023) aggregated from census tracts to be 

used alongside a synthetic population of passengers designed to more reliably represent 

different underserved population segments seen in Figure 2.5a.  
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(a) 

(b)
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(c) 

(d) 

Figure 2.5 (a) Proprietary transportation analysis zones aggregated from census tracts (Liu et 

al., 2023); (b) road network from OpenStreetMap with truck routes shared by NYC DOT; (c) 

and (d) side by side comparisons of naïve shortest paths prescribed by Google Maps (Google, 

n.d.) vs our pathfinding incorporating the truck network.

For the road network, we use OpenStreetMap supplemented with truck route data shared by 

NYC DOT (Figure 2.5b). NYC DOT shared information based upon vehicle height restrictions, truck 

route restrictions, and truck route designations. These were incorporated into the network for 

finding shortest paths so that the choices generated would mirror real world choices that are 

available to trucks. Figure 2.5c and 2.5d demonstrate examples of our routing tool providing truck 

appropriate routes that Google Maps does not. Figure 2.5c shows our tool recommending the 
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Manhattan Bridge because trucks are not allowed on the Brooklyn Bridge, and Figure 2.5d shows 

our tool recommending a safer truck route instead of a neighborhood route down Roosevelt Ave 

that includes elevated subway lines which are flagged as having low clearance in real life.  

Link travel times were sourced from the 2019 subset of the Uber Movement dataset. Because 

the dataset came pre-tagged with OSMIDs, it was very easy to incorporate. We aggregated the 

travel times into 4 Time of Day blocks: 6:00AM-10:59AM for Morning, 11:00AM-3:59PM for Mid-

Day,4:00PM-8:59PM for PM, and then 9:00PM -5:59AM for Night. 

2.3 Validation of Employment by Establishment and FTP/FTA by Industry 

Figure 2.6a compares the number of employees measured from real data from the Quarterly 

Census of Employment and Wages (QCEW) (US Bureau of Labor Statistics, 2021) versus estimated 

using the model. Manhattan is the largest outlier due to the mismatch between the city land use 

policy and the economic reality in the field. In each case, our estimates are slightly above the 

observed data, but are well within an acceptable margin. The estimation of employees by 2-digit 

NAICS codes is also close to the number measured by the QCEW as seen in Figure 2.6b. 

Borough Predicted Observed Difference 

Brooklyn Total 806,840 767,475 5.1% 

The 
Bronx 

Total 369,740 362,546 2.0% 

Queens Total 2,593,432 2,357,212 10.0% 

Staten 
Island 

Total 734,947 696,506 5.5% 

Total 126,766 123,247 2.9% 

Grand 
Total 

4,631,725 4,306,986 7.5% 

(a)
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(b) 
Figure 2.6. US Census Employment data aggregated and compared at the (a) Borough level 

and (b) 2 Digit NAICS level. 

Table 2.3 compares the FTG aggregated to the borough level produced using the microdata 

available to the authors of NCFRP25 versus numbers predicted using the synthesized 

establishment employment data that we produced. Four of the five boroughs are within a tight 

margin, but Manhattan is a meaningful outlier. We believe this difference is because there are 

differences in defining the zones where our zones are split between internal zones and external 

zones to account for gateway trips separately. The number of trips that are produced or attracted 

at the gateways (otherwise understood as Internal/External or External/Internal trips) makes up 

a meaningful portion of the total number of missing trips, but this project estimates 7.0% fewer 

total trips generated than NCFRP 25. Given the different methodologies and the inherent 

uncertainty baked in, these results are seen to largely agree with each other. 

Table 2.3. Borough level FTG validation between microdata from NCFRP25 and synthesized 

establishment employment data 

From microdata 
From synthesized 

establishments 
Comparison 

Borough Est. FTG % Of Total Est. FTG % Of Total ΔFTG %Δ 

Brooklyn 178,000 24.8% 183,551 27.5% 5,551 +3.1%

Bronx 58,000 8.1% 63,941 9.6% 5,941 +10.2%

Manhattan 300,000 41.8% 159,668 23.9% -140,332 -46.7%
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Queens 153,000 21.3% 148,779 23.3% -4,221 -2.8%

Staten 

Island

29,000 3.8% 24,331 3.6% -4,669 -16.1%

Gateways - - 87,570 13.1% - - 

Total 718,000 100% 667,840 100% -50,160 -7.0%

Table 2.4 below compares in detail the distribution of FTA/FTP by industry used. Most of the 

industries attract and produce a similar amount of freight. However, some in the manufacturing 

sector (31-33) are heavily unbalanced toward FTP because of the non-linear parameters specified 

for estimation in the NCFRP report. This leaning is not necessarily problematic as there is no 

inherent reason that each industry should be equal. In fact, because of industry interactions, we 

expect manufacturers to attract goods from other sectors, transform them, and produce trips 

coded as their industry.     

Table 2.4. NAICS breakdown of FTP vs FTA. 

Industry Description FTP %FTP FTA %FTA 

21 Mining 11,691 66.9% 5777 33.1% 

22 Utilities 4607 52.1% 4236 47.9% 

23 Construction 12164 37.7% 20100 62.3% 

31 Manufacturing 5343 65.8% 2781 34.2% 

32 Manufacturing 21625 61.5% 13565 38.5% 

33 Manufacturing 9239 64.7% 5030 35.3% 

42 Wholesale Trade 39712 52.8% 35511 47.2% 

44 Retail Trade 145637 55.4% 117268 44.6% 

45 Retail Trade 53493 65.7% 27901 34.3% 

48 Transportation 27337 35.4% 49890 64.6% 

49 Warehousing 7754 41.1% 11103 58.9% 

72 Food Services 21166 58.7% 14911 41.3% 

Total 359,768 53.9% 308,073 46.1% 

The upper heatmap in Figure 2.7a shows the density of FTA within NYC. Most census tracts have 

small quantities of freight produced or attracted. Hence, a log scale is used to better visualize the 

differences in density. Ten major zones stand out, listed in no particular order: the airports, 

industrial zones, harbors, warehouse/wholesale zones, and the heart of Manhattan which has an 

extremely high density of industry 72 (Food Services). The lower heatmap (Figure 2.7b) shows 
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the density of FTP in NYC with the location of gateways that have been used in the model. As 

expected, the active locations for FTP and FTA are similar. 

(a)
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(b) 

Figure 2.7 Key locations overlaid on FTA (a) and FTP (b) NYC heatmap. 

FTP/FTA Balancing  

Table 2.5 compares in detail the distribution of FTA/FTP by industry used at an aggregate level. 

Most of the industries attract and produce a similar amount of freight. However, some in the 

manufacturing sector (31-33) are heavily unbalanced toward FTP because of the non-linear 

parameters specified for estimation in the NCFRP report. For distribution purposes, we need to 

balance the productions and attractions so that total volumes produced end up going somewhere 

(see McNally, 2007). 
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Table 2.5. NAICS breakdown of FTP vs FTA 

Industry FTP FTA % Split 

21 562 423 57/43 

22 4424 2837 61/39 

23 11485 19894 37/63 

31 3746 2353 61/39 

32 7153 2680 73/27 

33 5796 4545 56/44 

42 34911 35255 50/50 

44 127715 117099 52/48 

45 50189 27836 64/36 

48 23105 48753 32/68 

49 5986 7830 43/57 

72 21106 14587 59/41 

Total 296178 284092 51/49 

We chose the FTA as the base in which the volumes are not changed because NCFRP25 indicated 

that the estimation process was more certain of the FTA than FTP. Additionally, because of the 

certainty regarding the gateway flow estimation due to truck volume data, those FTGs were also 

held fixed. The FTP in each industry in each internal zone was scaled up or down such that the 

sum of FTP for all the zones for each industry was set equal to the FTA. However, due to the 

difference in internal vs gateway FTG, it was not always possible to scale the FTP, so instead for 

some industries the FTA was scaled, usually up, to match. This process resulted in roughly 8% 

more FTG bringing the total FTG to 724,994, which is within 1% of the previous estimate of 

718,000. Table 2.6 lays out the differences between the FTG estimated in Table 2.3 and the 

balanced version.   

Table 2.6 FTG Comparison Between Initial Estimates and Balanced Model Inputs 

Table 2.3 Balance Δ FTG %Δ 

Brooklyn 183,551 236,508 52,957 22.4% 

The Bronx 63,941 67,826 3885 5.7% 

Manhattan 159,886 147,859 -11,809 -8.0%

Queens 148,779 158,721 9942 6.3% 

Staten Island 24,331 27,053 2722 10.1% 

Gateways 87,570 87,027 -543 -0.6%

Total 668,058 724,994 57,154 7.9% 
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3 Synthetic Truck Population 

3.1 Tour set generation and distribution 

Tour set generation 

With the FTPs/FTAs generated and balanced, we are now ready to distribute them using tours 

(except for the long-haul trips, which are direct roundtrips between gateways and warehouse 

zones as mentioned earlier).  

The tour set generation process is composed of three steps. Given a tour set size, the first step 

establishes the number of stops of each tour. For each specified industry, an average number of 

stops is found (Holguín-Veras et al., 2013) and then a random number of stops is sampled from 

a distribution based on that average number. For the choice of distribution, a fatigue-life 

distribution (Eq. (3.1)) is used as opposed to a simple exponential because its shape sharply 

increases towards a peak at the average value followed by a long tail. This is argued to be a better 

representation of possible tour behavior (Figliozzi et al., 2006). The SciPy fatiguelife.rvs() function 

is used to invert the distribution to draw a random value.  

𝑓(𝑥, 𝑐) =  
𝑥 + 1

2𝑐√2𝜋𝑥3
𝑒

−
(𝑥−1)2

2𝑥𝑐2 (3.1) 

where 

x is the average length 

c is an industry specific shape constant derived from calibration 

The shape parameter 𝑐 needs to be calibrated for each of the different industries to keep the 

desired sharp peak into long tail profile. Each c was calculated by adjusting the value so that mean 

corresponding to the distribution matched the average number of stops for the industry. Figure 

3.1 shows the relationship between industry averages and their respective c values. 
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Figure 3.1 Calibration of the c parameter 

Each tour is assigned an origin as the FTP location and depot (assumed to be sufficiently close, 

given lack of data to generate otherwise), and a number of destinations which together equal to 

the number of stops simulated by Eq. (1). Origins are randomly selected based on FTP volume 

weighting. For a given origin, the set of chosen destinations can result in very different tours. 

Purely random destination selections can lead to very large tour lengths traversing throughout a 

region that does not exhibit any destination clustering in Holguín-Veras et al. (2011). Destinations 

selected too close to an origin can lead to short tour lengths that do not properly represent 

observed truck traffic patterns.  

As such, the destination selection for each stop is done using iterated weighted random selection 

from the FTA volumes without replacement. The weight for each zone to be selected as a 

destination for a given origin is determined by a negative exponential function in Eq. (3.2). The 

function represents a monotonic distance decay for preference to visit destinations farther away, 

with a parameter 𝜃 that can be calibrated to observed data to ensure output flows closely match 

observed truck traffic.  
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𝑤𝑖𝑗 = 𝑒−𝜃𝑑𝑖𝑗 (3.2) 

where 

𝑤𝑖𝑗  is the weight applied to sampling a destination zone 𝑗 relative to an origin zone 𝑖

𝑑𝑖𝑗 is a precomputed network distance between origin 𝑖 and destination 𝑗

𝜃 is a calibrated parameter 

Finally, a simple insertion heuristic (see Algorithm 2 in Yoon et al., 2022, for an example) is used 

to sequence the stops into a reasonable tour starting and ending at the FTP zone. The result is 

visually represented in Figure 3.2. The three tours displayed in the figure represent some of the 

highest flow tours created by the synthetic population analyzed in section 3.6.  

Figure 3.2 Illustration of insertion heuristic used to sequence tour stops. 
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Tour flow distribution 

After the tour sets are generated for each industry, they are loaded with flows based on entropy 

maximization. Since each truck is assumed to serve only one commodity in a tour, we leave out 

the industry index in the formulation for simplicity. Two sets of decision variables are desired for 

each industry: 𝑡𝑚 is the number of trucks on tour 𝑚 ∈ 𝑀 while 𝑦𝑗𝑚 is the weight of freight 

delivered at zone 𝑗 on tour 𝑚. The variables are shown below. 

Decision variables 

𝑡𝑚 is the number of trucks on tour 𝑚 ∈ 𝑀 

𝑦𝑗𝑚 is the weight of freight delivered at zone 𝑗 on tour 𝑚 

Parameters 

M is the tour set 
P is the production zone set 
A is the attraction zone set 
Oi is the number of trucks departing from production zone i ∈ P 
Fj is the weight of freight delivered at zone j ∈ A 

aim is a binary indicator for if zone i ∈ P is on tour m ∈ M 
bjm is a binary indicator for if zone j ∈ A is on tour m ∈ M 

hk is the truck capacity for industry code k used to convert between trucks and weight 
sm is the number of stops on tour m ∈ M 
C is a predetermined constant representing the desired total truck-stops, which depends on the 
average number of stops per industry code and the underlying distribution in Eq. (3.1). 

The model is shown in Eqs. (3.3) – (3.11). Eq. (3.3) is the entropy maximization objective set for 

the number of trucks; since the output is truck flow 𝑡𝑚 we leave the 𝑦𝑗𝑚 to be free. Eqs. (3.4) – 

(3.5) constrain the summation of the number of trucks and the amount of freight assigned to 

each zone to be equal to the FTP and FTA (converted to weight). Eq. (3.6) ensures that no freight 

is delivered to zones where it is not assigned. Eq. (3.7) establishes the truckload conversion 

between a truck and the amount of freight it can hold. Eq. (3.8) is used to calibrate the model to 

fit the average number of stops per tour. Eqs. (3.9) and (3.10) are non-negativity constraints for 

the decision variables, and Eq. (3.11) is an integer constraint because only whole numbers of 

trucks can be assigned.  
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Min 𝑧 =  ∑ (𝑡𝑚 ln(𝑡𝑚 + 1) − 𝑡𝑚)

𝑚 ∈ 𝑀

 (3.3) 

Subject to 

∑ 𝑎𝑖𝑚𝑡𝑚

𝑚 ∈𝑀

= 𝑂𝑖  ∀ 𝑖 ∈ 𝑃 (3.4) 

∑ 𝑏𝑗𝑚𝑦𝑗𝑚 = 𝐹𝑗  ∀ 𝑗 ∈ 𝐴

𝑚 ∈𝑀

 (3.5) 

∑ ∑(1 − 𝑏𝑗𝑚)𝑦𝑗𝑚  =  0 

𝑗 ∈𝐴𝑚 ∈𝑀

(3.6) 

∑ 𝑦𝑗𝑚  = 𝑡𝑚ℎ𝑘  ∀ 𝑚 ∈ 𝑀

𝑗 ∈𝐴

 (3.7) 

∑ 𝑠𝑚𝑡𝑚

𝑚

= 𝐶𝑘 (3.8) 

𝑡𝑚 ≥ 0  ∀ 𝑚 ∈ 𝑀 (3.9) 

𝑦𝑗𝑚 ≥ 0  ∀ 𝑚 ∈ 𝑀 (3.10) 

𝑡𝑚  ∈  ℤ  ∀ 𝑚 ∈ 𝑀 (3.11) 

Note that this model differs from the earlier tour-based entropy models, which are generally 

provided GPS truck tours and used to fit tour volumes to traffic counts. Here, we are fitting tour 

volumes to both FTPs and FTAs, while calibrating the parameters to fit the borough crossing 

traffic counts and constraining the average number of stops to match observed values.  

The model is nonlinear (but convex) with linear constraints. Using a nonlinear solver like in 

Sánchez-Díaz et al. (2015) would end up being very computationally inefficient if we try to fit 

10,000 tours to 83583 zones for 48 industries. For example, the python library SciPy took more 

than eight minutes running in a Google Colab notebook to find a solution to a sample case with 

only four zones and eight tours. Additionally, the linear matrix needed to represent the 
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constraints was larger than 5,000,000 by 5,000,000 because the model needs to consider every 

node on every tour. The resulting matrix was too large to be stored in RAM, and SciPy does not 

provide tools to represent the constraints as a sparse matrix.   

To solve the model efficiently, a new iterative balancing algorithm is proposed in Algorithm 3.1. 

The algorithm is inspired by iterative proportional fitting algorithms for fitting origin-destination 

(OD) trips in passenger travel (e.g. Fratar, 1954; Wilson, 1969), but expanded upon to account 

for the structure of the present model.  

To seed the initial cost of the tour, the fatigue life function from Eq. (3.1) is used to generate the 

value of 𝑓𝑚, the seed value for the tour length. The algorithm then proportionally rebalances the 

assigned tour flows to better match the FTP and then performs the same on the freight assigned 

to each stop. This process repeats until the change between iterations drops below a 

predetermined threshold.  

Given that this process will naturally result in non-integer flows for each iteration (and hence 

relaxing the integral constraint 3.12), we enforce the integral constraint after the tolerance check 

has been met. A rounding step is introduced to heuristically assign fractions to either zero or one. 

Rounding results in the removal of tours with fractional levels of flow which has the effect of 

better satisfying the goals of entropy maximization by moving that marginal flow to the tours 

already deemed most probable. This redistribution is only necessary at a level below one unit of 

flow because a tour must assign at least one vehicle. Without this step, tours with hundredths of 

a unit of flow would still receive one truck leading to their outsized influence in the validation 

phase.     

Algorithm 3.1: Iterative balancing algorithm 

1- Initialize

a. Calculate 𝑓𝑚 using Eq. (3.1) for each tour 𝑚 ∈ 𝑀.

b. Set 𝑟 = 1

c. For each 𝑗 and for each 𝑚 ∈ 𝑀𝑗 , assign 𝑦𝑗𝑚
𝑟 = 𝐹𝑗

𝑏𝑗𝑚𝑓𝑚

∑ 𝑏𝑗𝑚𝑓𝑚𝑚

d. For each 𝑚, set 𝑡𝑚
𝑟 =

∑ 𝑦𝑗𝑚
𝑟

𝑗 ∈𝐴

ℎ𝑘

2- Iteratively rebalance

a. Rebalance the tour volumes: 𝑡𝑚
𝑟+1 = ∑ 𝑂𝑖

𝑎𝑖𝑚(
∑ 𝑦𝑗𝑚

𝑟
𝑗 ∈𝐴

ℎ𝑘
)

∑ 𝑎𝑖𝑚(
∑ 𝑦𝑗𝑚

𝑟
𝑗 ∈𝐴

ℎ𝑘
)𝑚

𝑖
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b. Rebalance the stop volumes: 𝑦𝑗𝑚
𝑟+1 = 𝐹𝑗

𝑏𝑗𝑚(
𝑡𝑚

𝑟+1

𝑡𝑚
𝑟 )𝑦𝑗𝑚

𝑟

∑ 𝑏𝑗𝑚(
𝑡𝑚

𝑟+1

𝑡𝑚
𝑟 )𝑦𝑗𝑚

𝑟
𝑚

3- Tolerance check

a. If tolerance condition is not met (e.g. change in 𝑡𝑚
𝑟+1 vs 𝑡𝑚

𝑟  and 𝑦𝑗𝑚
𝑟+1 vs 𝑦𝑗𝑚

𝑟 ) let 𝑟 =

𝑟 + 1 and repeat step 2, else stop.

4- Integerization Rounding

a. Round every tour volume: 𝑡𝑚 = 𝑖𝑛𝑡(𝑡𝑚)
b. For every tour where 𝑖𝑛𝑡(𝑡𝑚) = 0 ,  𝑡𝑚  += 1 for a corresponding number of tours

ranked by highest flow

Proposition 1. Algorithm 1 converges to a unique solution for a given set of 𝑓𝑚. 

Proof. The algorithm belongs to the class of iterative proportional fitting procedures first 

proposed by Deming and Stephan (1940) and popularized in transportation planning by 

Fratar (1954). The 𝑓𝑚 and the tours simply define the interaction structure. The tours each 

represents one dimension in which 𝑝𝑖𝑗 > 0 for a production zone 𝑖 with attraction zone 𝑗 in 

its tour, and 𝑝𝑖𝑗 = 0 otherwise. Then a system with 10,000 tours can be modeled as a 10,000-

dimensional matrix. With this established, we then refer to Bishop (1967, 1969) who showed 

that convergence of the IPFP to a unique solution is applicable to any multidimensional table. 

Illustrative example 

To measure the efficiency improvements, the iterative balancing algorithm was run on the same 

simple test case that took the SciPy solver 500 seconds. Four interconnected zones [A, B, C, D] 

were created which attracted 400, 300, 200, and 100 units of freight respectively while producing 

40, 10, 20, and 30 trucks respectively. Eight tours were created, each with one pick up and two 

drop off locations as shown in Table 3.1. SciPy assigned flows (𝑡𝑚) of [15, 3, 21, 15, 17, 9, 6, 16] 

which satisfied the constraints perfectly with an objective score of -1282.9. The iterative 

balancing algorithm assigned flows of [13, 3, 23, 14, 17, 7, 7, 16] was less optimal with an 

objective score of -1272.9 but took only .05 seconds to solve and was also run in a Google Colab 

notebook. 
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Table 3.1 Tours used to illustrate Algorithm 3.1 

Tour ID Pick Up Zone Drop Off Zone 1 Drop Off Zone 2 

1 C A B 

2 B D C 

3 A B D 

4 D C A 

5 A C D 

6 B A C 

7 C D B 

8 D B A 

A total of 470,000 tours were generated, divided out to 10,000 tours per each of the 47 industries. 

The FTPs/FTAs were then distributed among those tours using Algorithm 3.1. The stopping 

condition specified in Algorithm 1 is set to when as when the average change in freight assigned 

to each zone 𝑗 ∈ 𝐴 by each tour 𝑚 ∈ 𝑀 and each industry 𝑘 ∈ 𝐾 (
1

|𝑀|
∑ (𝑦𝑗𝑚𝑘

𝑟 − 𝑦𝑗𝑚𝑘
𝑟−1)𝑓,𝑚,𝑘 )

drops below 0.1 tons of freight. The trajectory of the algorithm relative to the stopping criterion 

for representative industry NAICS 212 is displayed in Figure 3.3. 
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Figure 3.3 Stopping Condition Trajectory 

A comparison of the average number of stops per industry in the output freight tours and 

the desired averages are summarized in Table 3.2.
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Table 3.2 Comparison of observed and predicted average number of stops by 3-digit NAICS 

industry 

NAICS 
Predicted 

# of 
Stops 

Calculated 
# of Stops 

NAICS 
Predicted 
# of Stops 

Calculated # 
of Stops 

211 4.7 7.6 337 6.6 8.2 

212 5.9 7.6 339 10.8 9.5 

213 5.9 6.9 423 6.9 8.7 

221 4.7 7.9 424 8.7 9.1 

311 15.7 10.9 425 9.3 9.3 

312 14.3 11.8 441 6.0 8.1 

313 6.6 9.1 444 7.5 8.9 

314 6.6 8.6 445 15.7 11.4 

315 6.6 7.9 446 6.6 8.3 

316 6.6 9.4 447 4.7 7.8 

321 5.6 8.2 448 6.2 8.3 

322 7.4 9.0 452 7.7 8.5 

323 7.0 8.1 454 10.0 9.2 

324 4.7 8.2 481 5.9 8.0 

325 6.6 7.8 482 5.9 8.3 

326 5.7 7.8 483 5.9 8.3 

327 4.7 7.7 484 9.6 9.3 

331 8.3 9.3 485 5.9 7.8 

332 9.6 8.7 486 5.9 8.2 

333 6.8 8.5 491 9.6 9.5 

334 9.0 8.0 492 9.6 9.4 

335 9.0 8.7 493 9.6 9.1 

336 5.9 8.6 721 9.6 9.0 

722 9.6 9.2 

3.2 Gateway tour flow distribution 

Trips to and from gateways are split into long-haul, truckload trips destined for distribution 

centers or warehouses within a study area and short-haul less-than-truckload (LTL) trips. AADTT 

data are used to determine appropriate percentages. The long-haul trips that enter and leave the 

study area are assumed to be direct round trips while the short-haul trips follow similar tour 

patterns as the rest of the internal study area. This process results in one-trip tour flows from the 
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gateways to the distribution centers and then creating the otherwise standard tour flows 

resulting from the new freight trips at the distribution centers. Distribution centers were 

assumed to be located in the zones which had the highest quantities of FTP/FTA in NAICS code 

48 (Transportation and Warehousing).   

3.3 Tour assignment and scheduling for synthetic population 

Once the tour flows are determined, the synthetic population is assigned tour details. We know 

the number of FTPs. Based on those numbers, we randomly sample from the tours using the 𝑡𝑚 

as weights. Our average tour length for the synthetic population was 6.88 delivery stops per tour 

which is longer than the 5.5 delivery stops found by Holguín-Veras et al., (2010), but not 

inconsistent especially given the industries that were examined in that work versus this one.   

After assigning tours to the population, we broke them up into vehicle classes according to a 

distribution (FHWA 2020), the start time of each tour, and service time at each stop. The planned 

schedule for each truck is then generated. A start time is randomly generated according to a 

distribution so that the arrival time at the first East River bridge matches measured data from 

2015 and 2016 averaged together and binned into 3-hour intervals beginning 1AM-4AM 

continuing through to 10pm wrapping back to 1AM as in the report 2016 New York City Bridge 

Traffic Volumes (NYC DOT 2018). The East River bridges (Manhattan, Brooklyn, Williamsburg, 

Queensboro, and TriBorough) were chosen to be the basis for the time-of-day distribution 

because of their centrality and data availability. The observed data and the results are displayed 

in Figure 3.4.  

Finally, real world service times can be highly variable and difficult to accurately recreate 

because they are subject to many external forces (Holguín-Veras et al., 2010, 2016).  Holguín-

Veras et al., (2010) found that the service time per stop was between 20 and 60 minutes. 

Holguín-Veras et al., (2016) simulated that, under current conditions, looking for legal curb 

space added 30 minutes or less more than half the time, and that this number was sensitive to 

the supply of truck designated curb space available. Given these findings and because this 

project only attempted to quantify delivery service demand, not supply, a simplifying 

assumption for total service time per stop was made to use 1 hour per stop in Manhattan and 

30 minutes per stop everywhere else. This borough level distinction was drawn to represent the 

relative lack of curb supply in Manhattan detailed by Holguín-Veras et al. (2016). This curb 
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availability distinction can be seen in policies like double parking being legal in many of the 

outer boroughs.   

(a) 

(b) 

Figure 3.4 Truck Tour Start. Time -of-day distribution of (a) observed bridge crossings and (b) 

synthesized truck tour bridge crossings. 
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3.4 Tour Volume Model Calibration and Validation 

The output of the truck tour distribution model is a sequence of OD pairs per tour. For example, 

a tour visiting nodes [1,2,3,4,5,1] implies ODs [1,2], [2,3], [3,4], [4,5], and [5,1]. To calibrate and 

validate the model at this step without a further trip assignment model, we compare major 

corridor and crossing AADTT data to the tour OD pairs using the shortest truck-restricted paths 

under different times of day. At borough-level crossings, this should be sufficiently accurate 

(route assignment would determine the ways they cross over).  

To calibrate the theta parameter from Eq. (3.2), different values were sampled. Beginning with a 

theta of 1, then branching to 2 and 0.5, and then trimming back to 0.75. Figure 3.5 shows the 

process of the calibration. For each value of theta, the percent error comparing our model-

produced volumes crossing each borough boundary (both in and out) to the counts from the 

locations defined in the Delivering New York report (NYC DOT 2021) is displayed. A clear trend 

can be seen where 0.75 is consistently among the best performers for each borough boundary, 

including the smallest total error of 6%.  

Figure 3.5 Count Estimation Error Across Borough Lines by Theta Values(a) 
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(b) 

Figure 3.6a shows these locations from the report with the counts from the calibrated model 

compared to the real-world values. From these, we can begin to understand the nuances of the 

results. Staten Island is very accurate, Manhattan and Queens are slightly overestimated, and 

Brooklyn is overestimated by the same absolute value that the Bronx is underestimated which 

leads to the total values of measured and estimated trucks being acceptably close.  

Digging deeper though, we separate out borough boundaries by destination and include 

measurements at more internal locations (mapped in Figure 3.6b). This analysis suggests that the 

Bronx is well estimated. Its borders with Manhattan and Queens are both within acceptable 

limits. Continuing this more in-depth lens reveals that every borough boundary that does not 

cross the East River, 8 out of the 12, have a combined average error of only 10.9%. Those four 

remaining borough boundaries (Manhattan to/from Brooklyn, Manhattan to/from Queens) 

contain the majority of the error. Taking all the borough boundaries together, the average error 

is 19.8%.   

Overestimates across the East River are due to the nature of the tour set being constructed to 

favor proximal zones. In subsequent research, another parameter might be needed to 
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differentiate impedance of trips crossing the Manhattan-Queens and Manhattan-Brooklyn 

borders from the other tours in NYC to reduce the crossings, e.g. 𝑤𝑖𝑗 = 𝑒−𝜃1𝜃𝑀𝑁𝑑𝑖𝑗, where 𝜃1 =

0.75 and 𝜃𝑀𝑁 > 1 if (𝑖, 𝑗) are between Manhattan and Queens or Brooklyn (and vice versa), and 

1 otherwise. 
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(a) 

(b) 

Figure 3.6. Truck movements mapped across borough boundaries at (a) NYC DOT specified 
locations and at (b) all major locations. 



42 Quantifying and Visualizing City Truck Route Network Efficiency 

Using a Virtual Testbed 

Overestimates across the East River are due to the nature of the tour set being constructed to 

favor proximal zones. Since the flow assignment did not account for congestion effects, it is likely 

that some amount of real-world flow would be diverted off the main routes which is not captured 

here.  

The relative agreement between the projected truck counts and real-world measures lends 

support to the model results.  

3.5 Synthetic Freight Population 

Two synthetic freight populations were produced for this project: a base version and one that 
meets the scenario outlined in Section 3.8. A truncated version of a synthetic truck population 
can be seen in Table 3.3. The tours have been broken into individual agents. A small amount of 
randomness was added to the start times for each tour and the coordinates for each 
destination to reduce overcrowding on the specific values. 
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Table 3.3 Synthetic Freight Population Structure 

Index Tour NAICS 
Light0/ 
Heavy1 

Start 
Time 

Tot 
TravTime TotEmiss P A A.1

Trip 
Time 

Serv 
Time 

Trip 
Emiss Tons/Trk Lat1 Long1 

15 1 212 0 22.3691 7.30 13201 189 189 472 0.301829 0.5 1160.083 12.65 
-

74.0167 40.7055 

16 1 212 0 21.39118 7.30 13201 189 189 472 0.301829 0.5 1160.083 12.65 
-

74.0169 40.70667 

17 1 212 0 20.77578 7.30 13201 189 189 472 0.301829 0.5 1160.083 12.65 
-

74.0439 40.6900 

18 1 212 0 21.59336 7.30 13201 189 189 472 0.301829 0.5 1160.083 12.65 
-

74.0445 40.68917 

19 1 212 0 21.41276 7.30 13201 189 189 472 0.301829 0.5 1160.083 12.65 
-

74.0157 40.70947 
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One branch of future work will incorporate this synthetic freight population into MATSim-NYC. 

For more information on the specifics of MATSim synthetic population files, see He et al. (2021). 

Component Calculations 

Tour travel times were constructed by summing the link travel times based upon the appropriate 

ToD block. Medium trucks are vehicles FWHA class 5, 6, or 7. Heavy trucks are anything class 8 

and above. As described in section 3.2, all heavy trucks were assumed to be long haul trucks 

destined for warehouses. All other trucks at the gateway and all internal trucks were assumed to 

be light trucks. These do not include parcel delivery vehicles like the sprinter vans used by 

Amazon (ex. Figure 3.7) because they are considered commercial vehicles and not flagged in the 

truck counts reported by AADTT sources.  

Figure 3.7 Light Duty freight commercial vehicle 

To calculate emissions, these speeds were then fed into the primary equation described by 

Bigazzi & Figliozzi (2013) (Eq. 3.12) which relates average speed to the emissions of various 

pollutants for different truck sizes. This work used class 6 and class 8 as the representative trucks 

for light and heavy vehicles respectively. For simplicity, only CO2 emissions (measured in terms 

of metric tons of carbon equivalent) are reported, although an analysis on other harmful 

pollutants would follow the same process. Analysis showed that trucks traveling during the night 

had the lowest emissions because their speed was closest to free flow allowing for more 

efficiency. Having emissions per link also allows for using them as a link cost to calculate a 
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cleanest path. The five values of 𝑎𝑖,ℎ𝑑  used to compute CO2 emissions are [9.254, -0.1748, 

0.006307, -1.007 x 10-4, 5.74 x 10-7].   

𝑒𝑗(𝑣𝑗) = exp (∑ 𝑎𝑖,𝑗

4

𝑖=0

∙ 𝑣𝑗
𝑖) (3.12) 

Where: 

𝑒𝑗 is vehicle class average spatial emissions rates in grams emitted per vehicle mile 

𝑣𝑗is vehicle class average speed in miles per hour 

𝑗 is vehicle class 

𝑎𝑖,𝑗 are fitted parameters 

3.6 Base Case Exploration 

An analysis of the synthetic population as initially generated produces the following results. In 

total, 333,843 trucks were assigned, and they produced 2,573,441 trips. Figure 3.8 shows for each 

custom TAZ the estimated (a) Vehicle Miles Traveled, (b) total emissions in MTCE of CO2, and (c) 

veh-hours accumulated within each zone. Results are normalized as densities by dividing by area 

(mi^2).  As these results ignore congestion effects, we can assume that the real-world numbers 

would be larger. 
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(a) (b) 

     (c)  (d) 

Figure 3.8 (a) NYC heatmap of estimated VHT; (b) VHT density; (c) CO2 Emissions; and (d) CO2 
Emissions density. 

Figure 3.9 is designed to show the synthetic population’s ability to represent the variation of the 

data in time and space. Results are normalized by mi^2. Figure 3.9a captures total vehicle service 

time per day by zone which represents how much time vehicles are waiting at each drop-off 

location. The shading is broken down into 6 quantiles. Bin 3 having the smallest range indicates 

that the most zones fall between 1603 and 2273 hours/mi^2 of service time.  This metric can be 
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used as a proxy for parking demand especially in the areas where businesses are not going to 

have private loading and unloading zones, and its importance is discussed in Holguín-Veras et al. 

(2016). As expected, several of the areas designated as high freight attraction zones in Figure 

2.7a standout.  Figure 3.9b captures how total service time varies throughout the day. A similar 

analysis could be performed with the other currently tracked metrics such as emissions.  

(a)



48 Quantifying and Visualizing City Truck Route Network Efficiency 

Using a Virtual Testbed 

(b) 

Figure 3.9 (a) Cumulative Service Time per Day per Zone; (b) Service Time per Hour per Time 

of Day for Each Borough 

Table 3.4 shows the top NAICS industries by their total emissions, vehicle hours traveled, and 

vehicle miles traveled. As expected, we see a strong correlation between these measurements. 
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Even among the top 5 though, there is a strong drop off in volume across all three statistics 

showing the unique characteristic of each, and why it is necessary to separate them out when 

modeling their behaviors. Industries 221 and 722 make up the 4th slot in Table 3.4. NAICS 221 is 

utilities while 722 is food service. While NAICS 722 takes that slot for VMT, it is not among the 

top 5 for VHT. This indicates that restaurant deliveries spend a higher percentage of their time 

on faster roads like freeways and major arterials than utilities. This suggests that utility 

destinations are more likely to be farther from major freeways or arterials.  

Table 3.4. Top 5 NAICS codes by emissions, VHT, and VMT. 

Industry 
(NAICS) 

Avg Daily CO2 Emissions 

(MTCE× 𝟏𝟎𝟔) 

Industry 
(NAICS) 

Avg Daily VMT 
(mi× 𝟏𝟎𝟎𝟎) 

Building material (444) 24.2 Building material (444) 103.7 
Motor vehicles (441) 20.1 Motor vehicles (441) 81.4 

Wholesale trade (425) 16.3 Wholesale trade (425) 68.4 

Utilities (221) 9.4 Food services (722) 48.1 

Non-store retail (454) 7.4 Non-store retail (454) 47.0 

3.7 Policy Use Cases 

The proposed synthetic truck population model can be used for many different purposes, even 

without integration with MATSim. Several that take advantage of its unique characteristics are 

highlighted here. 

• High resolution: The model can be used to forecast an approximate number of truck trips

(by OD) and corresponding weight of goods by industry for a given link, based on simple

assignment of truck trips via shortest paths. Of course, MATSim would lead to more

accurate assignments, but for a rough “daily” figure and evaluation of major

corridors/bridges this should suffice.

• Supply chain impacts: We can examine a scenario where an industry or a zone suffers a

disruption and model the resulting reverberations across other industries and the resulting

fallout in truck flows. Truck flows can be non-responsive, i.e. right after a disruption they

might be following the same patterns; or responsive, where trucks are re-assigned to new

tours based on new flows accounting for these disruptions.

• Sensitivity of tour patterns from technological changes: Changes to vehicle capacity can

impact tour flows; travel time changes can lead to new tour patterns and changed tours for

the truck population.
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• Operating policies: Changes to average number of stops per tour (e.g. operating hours) can

be modeled, as can having a new urban consolidation center lead to shifts in the long-haul

trip proportions assigned to a location and redistributed from there.

3.8 Truck Size Reduction Scenario Analysis 

The purpose of the scenario analysis is to demonstrate the strength of the synthetic freight 

population model to describe the interdependencies of freight truck travel in New York City by 

using the multifaceted dimensions of data reported for each tour. This tool will be able to help 

evaluate policy proposals by quantifying the benefits and drawbacks through the lens of 

congestion, emissions, and infrastructure.  

The specific scenario studied was a 20% reduction in the size of all trucks in New York City. While 

this scenario is not under consideration by policymakers, it helps to illustrate the trade-offs stated 

above. Since the total amount of freight is kept constant, a vehicular capacity reduction this leads 

to an increase of 20% in the number of freight trucks, which manifests negatively in many factors, 

some of which are captured in Figure 3.10. It shows heatmaps of the percent difference from the 

base case at the custom TAZ level. Figure 3.10(a) shows the percent difference between the base 

scenario and the 20% reduction scenario for vehicle miles traveled. Figure 3.10 (b) displays the 

percent difference in gas emissions in MTCE of CO2.  
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(a)
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(b) 

 Figure 3.10 NYC heatmap of Case Study increase over base case in (a) VMT and (b) CO2 

emissions. 

Additionally, the extra trucks require extra curb space and dwell times which can manifest in 

issues around overnight and long term truck parking. The increase is shown geographically in 

Figure 3.11. Again, the high freight attraction zones can be seen with the greatest increase in 
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service time per area. The shading is broken down into 6 quantiles. Bin 3 having the smallest 

range indicates that the most zones fall between 7 and 14% added.  

Figure 3.11 NYC heatmap of increase in truck service time hours over base case. 

Despite the increase in VMT and CO2, the scenario could reduce the damage to infrastructure. 

Even with the 20% reduction in weight, the number of daily Equivalent Single Axel Loads (ESALs), 

calculated by Eq. 3.13 (AASHTO, 1986), almost halves across the Queens Midtown Tunnel with 

similar results on the Manhattan Bridge as seen in Table 3.5. 

ESAL = (
𝑉𝑒ℎ 𝑊𝑒𝑖𝑔ℎ𝑡

18,000𝑙𝑏𝑠
)

4 (3.13) 
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Table 3.5 ESAL loads on select links in base scenario vs base study 

QMT 
MN Bound 

QMT 
QN Bound 

MN Bridge 
MN Bound 

MN Bridge 
BK Bound 

Qnty 
ESALs 

Truck 
Flow 

ESALs 
Truck 
Flow 

ESALs 
Truck 
Flow 

ESALs 
Truck 
Flow 

Base 6327 8813 6103 8468 2626 5666 2962 5318 

Case 
Study 3347 10977 3266 10530 1445 7102 1567 6622 

Change -47.1% 24.6% -46.5% 24.4% -45% 25.3% -47.1% 24.5% 

Significant reductions such as these in the load borne by the bridges and tunnels in the New York 

City area could meaningfully increase their lifespans which is a stated goal in the 2016 

NYCDOTNYC DOT Bridges and Tunnels Annual Condition Report. Importantly, the reduction 

occurs even with an increase in truck flows across the same links. Table 3.5 shows a rise of 24-

25% for the selected links which correlates with the 20% reduction in truck size.  
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4 Parcel delivery for NYC 

4.1 Literature review 

Parcel delivery 

The increase in e-commerce and the emergence of new technologies in recent years have 

inspired a wide variety of parcel delivery-related research, but much of it remains hypothetical. 

Even as some models have been evaluated with real-world scenarios, the scale of the case studies 

is rather limited. Morganti et al. (2014a) empirically studied the effectiveness of adding pick-up 

points and lockers into the delivery network in France and Germany. Perboli and Rosano (2019) 

discussed the interaction between traditional and novel operation practices in the delivery 

industry and makes findings based on real-world data from the city of Turin, Italy. Besides 

operation costs, the environmental impact of parcel delivery service has also been studied. Jaller 

et al. (2021) evaluated the cost-effectiveness of deploying electric freight vehicles by considering 

the negative impact of emissions, and the analysis was based on empirical data in California. Villa 

and Monzón (2021) studied the additional GHG emission generated from increased parcel 

delivery services in Madrid, Spain, because of COVID-19. All of these are empirical studies without 

modeling. It is worth mentioning that the majority of these real-world analyses are based on 

European cities (Ducret (2014) provides a good overview).  

The need to evaluate parcel delivery strategies beyond just using empirical data arises from 

emerging technologies. For example, Kafle et al. (2017) proposed a system enabling 

crowdsourcing to undertake last-mile delivery service and used a mixed integer nonlinear 

program to solve the routing assignment. Seghezzi and Mangiaracina (2022) also proposed a 

crowdsourcing solution and introduced a model combining gravity-based distribution with 

vehicle routing optimization to assign parcels in Milan. Models related to autonomous delivery 

vehicles have been proposed (Buchegger et al, 2018; Schlenther et al, 2020), in which the latter 

study by Schlenther et al. uses multi-agent simulation (MATSim) with a synthetic parcel demand 

population to assign tours via a customized taxi module. Other alternative strategies include 

networks of pickup points or lockers (Morganti et al. 2014b), urban consolidation centers (Simoni 

et al. 2018), collaborative deliveries via blockchain (Hribernik et al, 2020), and drone-based 

delivery (Kim et al, 2020; Kirschstein, 2020; El-Adle et al, 2021). Nguyen et al. (2019) employed 

optimal routing models to evaluate delivery strategies that can include both driving and walking, 

with a small case study in London. Allen et al. (2018) provided insights into the conflict between 
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current delivery service practices and urban infrastructure using a case study in central London. 

Kummer et al. (2021) studied the impact of parcel delivery service vehicles on the road network 

in Vienna, Austria. Beckers et al. (2022) used discrete choice models to translate household 

survey data into parcel delivery trips and the associated local freight impacts in Belgium were 

incorporated into simulations. 

The cargo bike has been one of the most viable options among all parcel service alternatives. 

Numerous pieces of literature have explored its application in urban delivery networks. Gruber 

et al. (2014) studied the preferences of couriers in using cargo bikes using a binary logit model. 

Nocerino et al. (2016) presented the results of several pilot programs of cargo bikes conducted 

in the city centers of Genoa and Milan, Italy. Anderluh et al. (2017) proposed a system based on 

synchronizing vans and cargo bikes and optimizing the system using routing models. Niels et al. 

(2018) studied a cargo bike project in Munich, Germany, and developed a city-wide cargo bike 

operation strategy based on the project. Nürnberg (2019) conducted field research on cargo 

bikes in Stargard, Poland. Arnold et al. (2018) and Llorca and Moeckel (2021) implemented 

custom simulations of deliveries to evaluate the benefits of cargo bikes. Assmann et al. (2020) 

studied the environmental impact of cargo bike deployment with the implementation of cargo 

bike transshipment points. Rudolph et al. (2022) proposed a location optimization model for 

cargo bike micro-consolidation center and applied it to the city center of Stuttgart, Germany.  

The literature on parcel deliveries can be divided into either proposed system designs with 

logistical routing optimization models or evaluations of alternative strategies. Among the latter, 

researchers interested in predicting parcel delivery volumes employ either routing optimization 

models or simulations. While routing optimization models work well in answering “how to” 

operate such systems, they are more lacking as descriptive/forecast models as there is less 

parameterization for fitting solutions to observed data without resorting to complex techniques 

like inverse optimization (You et al, 2016; Chen et al, 2021) and requiring detailed tour data. 

Furthermore, finding the exact solutions to these problems requires high computational power 

because of their NP-hardness (Lenstra and Kan, 1981). Simulations are similarly computationally 

expensive, making it hard to apply to a large-scale environment without relying on extensive 

assumptions. Because of this, we propose using a continuous approximation model to tackle a 

large-scale model of NYC. 
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Continuous Approximation 

Continuous approximation makes use of geometric probabilities (e.g., Beardwood et al., 1959) to 

estimate aggregate measures of a routing system’s performance while eschewing unnecessary 

details such as link selections. In giving up the design outputs (how to serve an area), such models 

gain in the applicability to large-scale policy analysis with low computational cost.  

An effective approximation formula was proposed to calculate the optimal length of a 

capacitated VRP (CVRP) by Daganzo (1984). The formulation consists of the travel length from 

the depot to the centroid of the service area and the tour length inside the service area. Such a 

concept has been widely used in other proposed CA methods (Chien, 1992; Langevin et al, 1996; 

Figliozzi, 2008). Some modifications to the two components in the formula are made in different 

studies. For example, the geometry feature of the service area can be incorporated into the tour 

length calculation (Kwon et al, 1995). In addition to the classic capacitated VRP, CA methods 

regarding more complex VRP with time window constraints (VRPTW) are also developed. Figliozzi 

(2009) proposed a CA method addressing the VRPTW by adding more terms counting the 

additional impact of time windows.  

A wide variety of transportation studies have been conducted based on continuous 

approximation methods. Ouyang and Daganzo (2006) designed an algorithm incorporating CA 

methods to solve location problems. Davis and Figliozzi (2013) used CA models to evaluate the 

operating cost of electric delivery trucks and their competitiveness when compared with 

conventional diesel trucks. Banerjee et al. (2022) designed a method to effectively partition a 

service area to enhance the same-day delivery service by using CA as part of their algorithm. 

Tipagornwong and Figliozzi (2014) applied CA to evaluate the cost of cargo tricycles, which is 

most similar to the method used in this study. In that study, the cost function incorporates a CA 

model, and the cargo tricycle cost is evaluated based on a small user case in Portland involving 

80 daily deliveries. Our study is more comprehensive in predicting trip generations and using CA 

to estimate associated VMT. In addition, our study differs in the scale of the case study to all the 

residential population in NYC, and the evaluation of alternative cargo bike modes as substitutions 

for only a subset of feasible depots in a mixed delivery system. 

Most studies involving CA methods are based on Euclidean or Manhattan metrics or are tested 

on hypothetical scenarios. Few studies apply CA to real-world scenarios on a large scale and more 

real-world validation of CA is still needed. 
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4.2 Methodology 

The proposed model consists of four major components that are described as follows: parcel 

volume and service stop generation, service area and volume assignment, CA model fit and VMT 

estimation, and result adjustment with novel delivery alternative implication. The model is 

summarized in Figure 4.1. This section explains the flow of the first three components in detail. 

The last component is best demonstrated in the case study. 

Figure 4.1 Model procedure. 

Parcel Volume and Service Stop Generation 

We estimate the package volume by using publicly available data and validate our result by 

comparing the aggregated value to the city-level parcel volume. The algorithm for this 

component is shown in Figure 4.2. Based on the distribution of residential areas and income level 

in each census tract, we assign the number of households with a certain income level to each 

building. In this process, we use the assumption stated as follows. 
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Assumption 1. The number of households is proportional to the residential area; all households 

in one building block have homogenous income levels. 

Validation is needed to ensure that the census tract income level distribution of assigned 

households is consistent with the provided income level distribution. We generate the parcel 

volume for delivery and pickup at each building block based on the assigned households by using 

the “Parcel Generation Factor” provided by USPS (USPS, 2021). These factors are the national 

average of weekly postal service volumes per household by income. To generate the average 

daily parcel volume, three more assumptions are made: 

Assumption 2. The number of parcels generated by NYC households is the same as the U.S. 

national average across income levels 

Assumption 3. The share of postal service parcels is the same across all households  

Assumption 4. Each week, 5 days are used to conduct parcel delivery and pickup services 

Assumption 4 comes from data suggesting that the parcel volume processed during the 
weekend is much lower than the weekday volume. Since we do not have detailed day-to-
day volume distributions, we used a simplistic assumption to estimate the daily volume. 
Based on these stated assumptions, the average daily volumes of residential parcels can be 
obtained. Since the “Parcel Generation Factor” is only consumer-based, which excludes 
business-to-business (B2B) parcels, we only consider the parcel services serving residential 
locations in this study. The generated volume can be validated by comparing the total 
number with the city-level residential parcel volume. According to an e-commerce survey 
conducted in Belgium in 2016, 75% of the respondents stated that they prefer home 
delivery (Beckers et al, 2022). Since the start of the global pandemic, a growing number of 
workforces chose to work from home and studies indicate such a trend will be a long-term 
phenomenon (Barrero et al, 2021). Therefore, a higher percentage of home deliveries can 
be expected. Therefore, the generated volume and stops would represent the majority of 
the citywide parcel services. 

To generate parcel service stops and the associated volumes, we use the following assumptions. 
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Assumption 5. Each building block is a potential parcel service stop by truck. Parcel delivery 

drivers are assumed to deliver to each residential building on the block by foot, using a cart if 

necessary.  

Assumption 6. The market share of parcel service companies represents the delivery volume split 

at each service stop. 

Assumption 7. Stops with a volume lower than a certain threshold will not be directly served. 

Instead, it will be aggregated to the nearest stop having a volume higher than the threshold. 

Based on the assumption, delivery volume at each stop is split by using the market share of the 

four parcel service companies in the US market. The remaining delivery volume served by other 

companies is evenly distributed to UPS, FedEx, and Amazon, which are all privately owned. A 

“Delivery Volume Threshold” for each company is set for stop aggregation. Stops having delivery 

volumes lower than the threshold are joined to the closest stop whose delivery volumes are 

higher, and the aggregated delivery volumes are then rounded to integers. The stops joined to 

others can be treated as service points that do not require dedicated vehicle stops. Instead, they 

can be served by drivers walking to those points from the nearest vehicle stops, which is a 

common practice in an urban setting, i.e. “hoteling” (see Allen et al., 2018). Calibration on the 

thresholds is required to ensure that the delivery volume difference before and after stop 

aggregation is within a defined tolerance. In terms of pickup service, we assume that all pickup 

items are collected at the post office for USPS, and Amazon pickup volumes are evenly handled 

by UPS and FedEx. The same stop aggregation process is applied to pick up stops by setting 

“Pickup Volume Threshold”, and calibration of the threshold is also required. 

The e-commerce industry is highly seasonal. Therefore, the estimated average daily volume may 

not reflect the reality of the parcel service during peak seasons such as the fourth quarter. To 

capture such fluctuations, peak volume could be calculated by applying peak factors to the 

average daily volume, which could be obtained using companies’ operation data disclosed from 

their financial reports. 
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Figure 4.2 Data Processing Procedure for Volume and Stop Generation. 

Service Area Assignment 

The four major parcel service companies included in this study have their own distribution 

centers covering different service areas. Since these companies have already publicly listed their 

facility locations, we only need to determine the service areas covered by each distribution 

center with the given distribution center information. To estimate the service areas, we use the 

census tract as the basic unit. The shortest path distances from centers to the centroid of each 

census tract are calculated based on free flow speed. The service assignment procedure is only 

from a planning perspective and consists of deliveries made throughout the day, using travel time 

as a measure of impedance for clustering, not an actual measure of route travel time. As such, 

the use of real-time travel time throughout the day is not considered. Census tracts are served 

by the closest distribution center based on distance matrices. As illustrated in Figure 4.3, the 

shortest path from center B to the centroid of the green census tract is shorter than that from 

center A. Therefore, the selected census tract is served by center B. We then adjust the 
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assignment result based on boundaries unique to the studied area and the volume balance across 

the centers. 

Figure 4.3 Service Area Assignment. 

Continuous Approximation Model 

The CA model is particularly suitable for this study because of the uncertainty of actual stop 

locations and the scale of the problem. In our study, a service area is specifically assigned to a 

unique center for each company. Therefore, the problem becomes a single depot CVRP for each 

center. A simple yet effective CA formula can be written as Eq. (4.1). 

𝑉 = 2𝑟𝑚 + 𝑘√𝑛𝐴 (4.1) 
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where 𝑉 is the tour-based VMT, 𝑚 is the number of trucks, r is the distance between the depot 

and centroid of the service region, 𝑛 is the number of service locations, 𝐴 is the area of the service 

region, and 𝑘 is a coefficient for calibration. The original study sets 𝑘 = 0.57 for distances in the 

area measured using Euclidean distance as opposed to the shortest path distance (Daganzo, 

1984). An extra term (𝑛 − 𝑚)/𝑛 is added (Figliozzi et al, 2008) to correct the overestimation of 

the local tour distance when a service area is served by more trucks, as shown in Eq. (4.2). 

𝑉 = 2𝑟𝑚 + 𝑘(𝑛 − 𝑚)√𝐴/𝑛 (4.2) 

We calibrate 𝑘𝑖  to reflect real-world road networks by fitting the model to tour samples 

generated from smaller CVRP problems, where 𝑘𝑖  represents the unique value of 𝑘 fitted to 

match CVRP tour lengths where distances between nodes are determined using shortest paths 

on a road network in a specific region 𝑖 (the regions in the case study are boroughs). The tour 

lengths vary when solved by different routing algorithms, which reflects different routing 

strategies adapted by carrier companies. To produce a generalized routing result, we solve the 

CVRP problem without any additional routing constraint. To make the CVRP tour lengths closer 

to the actual ones generated by the parcel companies, a more accurate shortest path matrix is 

required. Uber Movement (2022) is a good resource to generate such a matrix. The speed 

information gathered from Uber drivers throughout the day accurately reflects various 

restrictions posed by the city (e.g., bus lane priority, turning restriction, etc.), which could heavily 

influence the choice of delivery routes. In this study, we only focus on the system-wide traffic 

and environmental impact generated by on-road activities from delivery trucks. Therefore, the 

objective function of the CVRP problem is set to be travel time minimization, which excludes the 

consideration of other operation metrics such as dwelling hour and generated profit. An 

underlying assumption of using Eq. (4.2) is that there is no time window constraint. Therefore, 

the generated result would be a lower bound of real-world scenarios where time windows can 

exist. 

In the original study, the formula considered only delivery stops. If deliveries and pickups could 

be mixed with no capacity constraint, 𝑛 would be the number of total service points including 
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delivery and pickup (Daganzo and Hall, 1993). We adopt this modification since the pickup 

volume generated in the case study is significantly less than the delivery volume. To include 

pickup service, we treat all pickup stops as separate service points even though they are at the 

same locations as delivery. Separating delivery and pickup points can capture the extra tour 

length induced by pickup service. 

4.3 Case Study 

We use NYC as our case study area and 2021 as the base year to apply the parcel service VMT 

estimation model. Importantly, 2019 is the base year for the truck case study. Each section is 

consistent within itself though. According to the 2020 census (U.S. Census Bureau, 2022), more 

than 8.8 million people resided in New York City. There are five big districts inside NYC called 

boroughs, which are Manhattan (MN), Bronx (BX), Brooklyn (BK), Queens (QN), and Staten Island 

(SI). 

Generating Service Demand 

Households are synthesized by combining information from the 2020 census population and 

household tables, as well as land use data (NYC Planning, 2022). For each building block, we 

randomly apply the income level drawn from the census tract level household income 

distribution (U.S. Census Bureau, 2022) to each building block. According to the statistical table, 

the median Margin of Error (MOE) of the NYC census tract income level is 40%. The rest of the 

procedures described in the methodology section is applied to generate corresponding stops and 

volumes for parcels in 2020. Based on the result, we further applied an 11.4% volume increase 

based on e-commerce sales (US Department of Commerce, 2022) to scale the parcel volume up 

to 2021. The result is an average daily volume of 1.91 million residential parcels estimated for 

2021. For validation, the New York Times (2021) reported 2.4 million average daily parcel 

volumes in NYC in 2021 of which ~80% are residentially destined, which equals 1.92 million 

residential parcels. Our result is nearly identical to the reported data. The delivery volume by 

census tract is shown in Figure 4.4. 

For stop aggregation, Delivery Volume Thresholds are calibrated to be 0.8, 0.7, 0.6, and 0.65 for 

USPS, UPS, FedEx, and Amazon respectively. The Pickup Volume Thresholds are uniformly set to 

0.66. Table 4.1 summarizes the final service metrics among the four companies, where the 

market shares are provided by Pitney Bowes (2022). 
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Table 4.1 Average service metrics among USPS, UPS, FedEx, and Amazon in 2021 

Market Share Daily Delivery Volume Pickup Volume Delivery Stops Pickup Stops 

USPS 32% 611,208 0 83,881 0 

UPS 25% 477,617 97,376 70,100 34,183 

FedEx 20% 382,635 85,644 63,557 30,506 

Amazon 23% 439,813 0 69,138 0 

Sum 100% 1,911,144 153,483 332,558 66,586 

The quarterly US domestic parcel volumes disclosed from each company’s financial report are 

used to calculate the peak season factors (USPS, 2022a; UPS, 2022a; FedEx, 2022a). Since Amazon 

does not disclose its parcel volume, the average value of the other three companies’ peak season 

factors is applied. Table 4.2 shows the peak factors and their corresponding peak volume. This is 

used to identify two demand scenarios: an Average Daily Volume and a Peak Daily Volume based 

on the peak season. The total is approximately 10.4% higher at a predicted 2.11M daily residential 

parcels during the peak season for 2021. It is important to note that these are residential parcel 

deliveries only, so low volumes for places like airports or other terminals are expected.  
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Figure 4.4 Average daily volume by census tract. 

Table 4.2 Peak season factor and peak daily volume from financial disclosure reports 

USPS UPS FedEx Amazon Total 

Peak Factor 1.065 1.173 1.057 1.122 1.104 

Peak Delivery Volume 651,318 560,443 404,016 493,190 2,108,966 

The location information of the distribution centers was collected in July 2022. Any facilities 

constructed later than that are not captured. In addition, we do not include the facilities run by 

the 3rd party logistics partners cooperating with Amazon due to limited availability of information. 

There are 9 UPS centers (UPS, 2022b), 8 FedEx centers (FedEx, 2022b), and 5 Amazon centers 
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(Wulfraat, 2020) in NYC. For USPS, only the destination delivery units (DDU) are included in this 

study. In total, there are 304 DDUs in the NYC area (USPS, 2022b). To match the unique 

characteristics of NYC’s road network, we restrict the census tracts in Manhattan to only be 

served by centers either in Manhattan or Bronx, and census tracts in Brooklyn and Queens cannot 

be served by those centers because of the operational difficulties of crossing the East River. The 

NYC road network obtained from OpenStreetMap (OSM) on June 5, 2022, is used to generate the 

shortest path distances for assigning service areas and for sampling distances for the CVRP solver 

below. Service areas are assigned to each center accordingly using these distances. Adjustment 

is made to further match each center’s assigned volume and its actual size. Figure 4.5 shows the 

final assignment result for each company. 

Figure 4.5 Service Area of (a) USPS, (b) UPS, (c) FedEx, and (d) Amazon defined by census 

tract. 
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Model Calibration, Validation, and Base Case Application 

To calibrate 𝑘 in Eq. (4.2), we first solve CVRP on the census tract level to obtain samples for 

fitting. Truck capacity is set to be uniformly 300 parcels (Komanoff, 2021). As studies have shown, 

CA models become more effective with higher stop density (Daganzo, 1984). Therefore, only 

census tracts with more than 200 delivery parcels are selected to ensure fitting accuracy. Based 

on such conditions, we randomly select 50 census tracts in Manhattan, 100 census tracts in 

Brooklyn and Queens, 40 census tracts in Bronx, and 30 census tracts in Staten Island. For all 

selected census tracts, we combine the stop information, the distance matrices generated from 

OSM, and the defined truck capacity to formulate CVRPs. The problems are solved using Google 

OR-Tools (Perron and Furnon, 2022). The Path Cheapest Arc algorithm, which is equivalent to 

Nearest Neighbor (Johnson and McGeoch, 1997), is selected to generate initial results. The 

Guided Local Search (GLS) is selected to find final solutions using previously generated results. 

Studies have found that combined with simple heuristics algorithms, GLS can find optimal or 

close-to-optimal solutions when solving small to medium size routing problems (Voudouris and 

Tsang, 1999). Therefore, the previously obtained solutions can be used as reasonable fitting 

samples to calibrate the CA coefficient. As mentioned in Section 3.3, we obtain the NYC road 

network speed data from Uber Movement (2022) to generate the shortest path matrix and 

calculate the sample route lengths. The shortest paths are calculated based on the NYC morning 

peak travel speed, which is defined by the average speed from 6 am to 10 am during workdays 

in the week of March 16th, 2019. The selected days reflect typical workday traffic before the 

pandemic. The traffic restriction in the selected period is the most stringent, which further limits 

the flexibility of route selections for parcel service companies, making the generated tour closer 

to real-world operations. For the final CA model, the unit of 𝑟 is in miles, and the unit of 𝐴 is in 

square miles. 

Table 4.3 shows the calibration result and the corresponding model accuracy. We calibrate 4 

distinct values of 𝑘𝑖  to capture the unique network characteristics in each region. The value of 𝑘𝑖  

corresponds to the network density in each region, with Manhattan having the highest density 

and Staten Island having the lowest. To put these values in perspective, known theoretical values 

of 𝑘 are 0.57 for Euclidean distance (Daganzo, 1984) and 0.97 for Manhattan distance (Jaillet, 

1988). To measure the model accuracy, 𝑅2 is calculated using Eq. (4.3). 
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𝑅2 = 1 − (𝑉′ −  𝑉)2/(𝑉′ − 𝑉)
2 (4.3) 

where 𝑉′ is the model distance, 𝑉 is the sample distance, and 𝑉 is the average sample distance. 

The selected CA model shows a high level of accuracy in all four regions (BK and QN are 

combined) with 𝑅2 all being higher than 0.98. The results demonstrate the capability of the CA 

model to accurately represent tour lengths of CVRP decisions in real-world applications even for 

complicated road networks. 

Table 4.3 Estimated coefficient and model approximation quality 

Region Sample Size 𝒌𝒊 R-squared

MN 50 0.708 0.995 

BX 40 0.894 0.981 

BK & QN 100 0.856 0.993 

SI 30 0.993 0.983 

Census tracts are aggregated to Neighborhood Tabulation Areas (NTA) for VMT estimation. In 

total, there are 262 NTAs and each NTA has eight to nine census tracts. The geographic and 

demographic characteristics are relatively uniform within each NTA, which makes the NTA a 

suitable unit to apply the CA model. Since there are more USPS DDUs than NTA, NTAs are only 

used for the other three companies. Instead, we aggregate census tracts served to each DDU for 

USPS, showing a more decentralized network of its operation. To calculate the average daily VMT 

in each service area, we set 𝑟 in Eq. (4.2) to be the trip distance between the center and the 

service area centroid and set 𝑚 to be the roundup integer of 𝑛/300. 

Table 4.4 shows the estimated daily parcel service VMT. According to Futurism (2017), there were 

around 2200 trucks owned by UPS. Since we are only considering residential parcels, which is 
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roughly 80% of the total parcel volume, our estimated number of 1683 UPS trucks is very close 

to the 1760 trucks used for residential delivery by UPS. 

Table 4.4 Estimated daily parcel service VMT 

Company Average 

Day 

Truck 

Trips 

Average 

Day 

VMT 

Average 

VMKT per 

Truck Trip 

Average 

Day MTCE 

Emissions 

Peak Day 

Truck 

Trip 

Peak 

Day 

VMT 

Peak Day 

VMT per 

Truck Trip 

Peak Day 

MTCE 

Emissions 

USPS 2,172 4,805 2.21 1.12 2,309 5,151 2.23 1.21 

UPS 1,686 18,482 10.96 4.33 2,080 22,790 10.95 5.33 

FedEx 1,374 15,881 11.56 3.72 1,389 16,029 11.54 3.75 

Amazon 1552 22,268 14.35 5.21 1736 24,865 14.32 5.82 

Total 7653 61,436 8.03 14.38 7514 68,836 9.16 16.11 

The daily total distance generated by parcel service in NYC is estimated to be 61.4 thousand 

vehicle-miles (veh-mi) each average day, and the number becomes 68.8 thousand veh-mi during 

a peak season day, an increase of 12% in VMT corresponding to the 10.4% demand increase. 
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Figure 4.6 Average daily total VMT per square mile by NTA. 

NYCDOTNYC DOT regulates that all trucks must turn off their engines while dwelling, which 

prevents additional emissions. Therefore, only the emission generated from on-road operations 

needs to be considered. A typical light truck is estimated to produce 234 grams of carbon dioxide 

per mile (EPA, 2021). By applying the emission factor, 14.38 metric tons of carbon equivalent 

(MTCE) emissions are estimated to be emitted from average daily parcel service operation, and 

during peak season it becomes 16.11 metric tons per day, as shown in Table 4.4. Interestingly, 

while Amazon only represents 23% of the market share in parcel demand and USPS has 32%, the 

nature of the denser depot design for USPS and routing results in a significantly higher MTCE for 

Amazon for these local deliveries, almost five times more. Granted, there is also an amount of 

VMT for transporting the parcels to those USPS facilities that are ignored here.  

Figure 4.6 shows the average day VMT density aggregated by NTA. Most NTAs with the highest 

levels of VMT density are located in areas nearby big distribution centers or areas with high 

population density. Notably, neighborhoods in west Manhattan and southeast Brooklyn are 

impacted the most due to the clustering of distribution centers. 
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Impact of COVID-19 on GHG emissions from parcel deliveries 

The COVID-19 pandemic accelerates the growth of e-commerce and delivery services (US 

Department of Commerce, 2022). To illustrate the environmental impact caused by such service 

increase, we use the 2019 report released by USPS (USPS, 2020) to estimate the 2019 VMT and 

associated GHG emissions. Annual GHG emission is estimated by aggregating the results on both 

average daily operation and peak season operation. The full 4th quarter is considered to be the 

peak season. Therefore, the peak volume is applied to each day of the 13 weeks of operation 

while the remaining 39 weeks assume average day volumes. Five workday schedule is used for 

the whole year. In 2019, the average daily VMT is estimated to be 44.36 vehicle-miles and 50.07 

vehicle-miles for peak season.  

The annual GHG before and after the pandemic generated by parcel services are 2787 and 3851 

MTCE, respectively. The GHG emission produced from parcel services is estimated to increase by 

38.2%, or by 1064.33 MTCE, partially due to the COVID-19 pandemic (there are other factors and 

trends in play as well so we cannot assume all the increase is due to COVID). For context, reducing 

emissions by 1 MTCE is equivalent to saving enough energy to power an average American home 

for 6 months (EPA, 2016), so the pandemic’s impact on parcel deliveries may attribute up to 

additional GHG emissions from powering 532 homes for a whole year. Therefore, more measures 

are needed to mitigate such environmental impacts in the future. 

Electric Cargo Bike Substitution for All Bike Lane-Eligible Depots 

To mitigate the negative impact of parcel services demonstrated in the previous section, other 

delivery alternatives have been explored in practice. Among all options, the electric cargo bike is 

a viable delivery alternative to replace delivery vans in urban areas. Cargo bikes do not produce 

GHG emissions during operation. They can be used to provide access to the metaphorical “last 

50 feet” of deliveries, which are typically operationally costly for parcel delivery trucks in which 

the driver would have to haul the parcels on foot. Cargo bikes can also take advantage of 

microhubs which can be placed at intermediate locations to distribute parcels more efficiently at 

lower costs. 

Currently, most cargo bikes are deployed in Asian and European cities. With NYC having more 

than 1200 miles (1931 km) of bike lanes (NYC DOT, 2020) while having the worst traffic condition 

in the US (Inrix, 2021), deploying cargo bikes in NYC would be a good example of showing its 

potential in the US. There are already existing pilots using cargo bikes in NYC (NYC DOT, 2021). In 
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this study, we explore the feasibility of deploying cargo bikes based on current infrastructure and 

how cargo bikes could reduce parcel service VMT in corresponding areas, using the model to 

systematically identify the best alternative deployments. Detailed operation options such as 

adding additional facilities like microhubs dedicated to cargo bikes are not considered. While 

cargo bikes may have lower impedances in delivering the last 50 ft and through the use of 

microhubs, the focus of this study is not on a comparison of operational costs between truck and 

cargo bikes (see Sheth et al., 2019, instead). Instead, it is only looking at the potential of cargo 

bikes in replacing truck VMT and GHG emissions. As such, the operational savings of cargo bikes 

in the last 50 ft or via microhubs are not the focus of this analysis. Readers interested in the 

design of microhubs for cargo bikes can refer to Rudolph et al. (2018), Katsela et al. (2022), and 

Rudolph et al. (2022) instead. 

Figure 4.7 UPS quad-cycle prototype. Source: UPS (2022c). 

We use the UPS quad-cycle prototype shown in Figure 4.7 as the primary cargo bike type. 

According to UPS (2022c), the quad-cycle is 84 centimeters wide which meets the dimensional 

requirement of legally using bike lanes. The previous tricycle prototype tested by UPS has a 

capacity of 400 pounds (Electrek, 2018) and can load 40 parcels (Electricbikereport, 2018). With 

the quad-cycle having a capacity of 462 pounds, roughly 45 parcels can be loaded inside its 

compartment with the same average package weight as 10 pounds. The quad-cycle has a top 

speed of 15 miles per hour (Reuters, 2022). According to Dybdalen and Ryeng (2022), the average 

speed of a cargo bike is 10 miles per hour in real-world operation, which is adopted in our 

analysis. 
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We use the total bike lane length divided by the total road length in each service area unit to get 

the bike lane percentage, and only areas with more than 10% bike lane percentage are 

considered eligible for cargo bike operation. In this study, cargo bikes are assumed to only 

provide delivery service and the following analysis is based on average daily operation. According 

to an e-commerce shopper survey conducted by International Post Corporation (2022), more 

than 50% of global cross-border parcels are lighter than 2.2 lbs. We expect that the US domestic 

e-commerce market will have a higher weight per package. Since the average cargo bike delivery

package would weigh 10 pounds (4.54 kg), we use a more conservative assumption that up to 

50% of all parcels can be handled by electric cargo bikes. Based on this assumption, we divide the 

delivery stops into three categories. Stops with delivery volumes higher than 45 are excluded 

from receiving cargo bike service. If a USPS stop receives less than 7 parcels, all parcels are 

assumed to be delivered by a cargo bike, while half of the delivery volumes are handled by cargo 

bikes for all other eligible stops. This number becomes 6, 5, and 6 for UPS, FedEx, and Amazon 

respectively. As such, the aggregated delivery volume that is eligible for cargo bike services is 

roughly half of each company’s total delivery volume.  

Studies have found that bike lanes can significantly reduce bicycle crashes (Morrison et al, 2019; 

Cai et al, 2021), especially along major roadways and at larger intersections. Therefore, the tours 

from distribution centers to service areas are restricted to only using bike lanes in this study. Such 

restriction is relaxed when conducting local deliveries because of the reduced risk of bicycle 

accidents on local roads (Cicchino et al, 2020). In this analysis, we assume that there is no 

restriction on electric cargo bike usage on bike lanes.  If no bike path could be found from a center 

to a service area, the area is excluded from the cargo bike operation. While technically cargo 

bikes would be allowed to use any street, we believe this assumption is valid because their 

exclusive use of bike lanes would likely be safer and more efficient.  Figure 4.8 shows the eligible 

service areas having viable connections to their service centers (represented as dots) through the 

bike lane network based on current bike infrastructure (NYC DOT, 2022). All Manhattan 

neighborhoods and eligible Bronx areas could receive cargo bike services provided by UPS. FedEx 

can provide cargo bike services to all the eligible areas in Bronx and upper Manhattan, and 

Amazon can use cargo bikes to service most Manhattan neighborhoods. With USPS having its 

DDUs scattered throughout the city, the accessible areas are confined to a smaller scale. 

Interestingly, part of Staten Island could receive cargo bike service through USPS, showing the 

advantage of such a decentralized distribution network. 



75 Quantifying and Visualizing City Truck Route Network Efficiency 

Using a Virtual Testbed 

Figure 4.8 Bike-accessible areas of (a) USPS, (b) UPS, (c) FedEx, and (d) Amazon. 

Figure 4.9 Disconnection between FedEx Brooklyn Center and bike lane network. 
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The cause of the areas being excluded is because of the disconnection between the centers and 

the bike lane network.  Except for centers in Staten Island, other centers could gain direct bike 

lane access by adding only a few hundred meters of bike lanes. Such a case is illustrated by using 

the FedEx Brooklyn Center as an example, which is shown in Figure 4.9.  

Table 4.5 shows the bike lane length required to connect centers and the average daily impact of 

adding those bike lanes. The centers in Staten Island are excluded due to the sparse bike lane 

network in the area. For USPS, the results are aggregated to the borough level. Areas in 

Manhattan, Brooklyn, and Queens can have significantly more cargo bike access by adding more 

bike lanes connecting the centers. Connecting FedEx centers to the bike lane network in Brooklyn 

and Manhattan, as well as connecting the Amazon Brooklyn center are the most cost-effective in 

adding cargo bike operation. 

New VMT is calculated by eliminating the volumes and stops served by cargo bikes and applying 

the fitted CA model again.  

Table 4.6 shows the VMT reduction based on two scenarios, one with cargo bikes being operated 

only in the currently bike-accessible areas, while the other one has all centers gaining full bike 

lane access except centers in Staten Island. All results are based on average daily operation. With 

the current bike infrastructure, 10.69% of daily VMT could be reduced. All eligible centers can be 

connected to the bike land network by investing in an additional 1.20, 0.85, 1.80, and 13.40 miles 

of additional bike lanes for depots at FedEx, UPS, Amazon, and USPS, respectively, for a total of 

17.2 additional miles, which is 1.4% of the 1200 existing miles of bike lanes in NYC. Doing so 

would improve the VMT reduction from 10.69% to 26.41%, resulting in a spatial distribution of 

VMT reduction shown in Figure 4.10. Clearly, shifting deliveries to cargo bikes can reduce local 

GHG emissions in the western parts of Manhattan along with East Harlem and the neighborhoods 

stretching between Sunset Park in western Brooklyn to Cypress Hills between Brooklyn and 

Queens, including Bushwick to Maspeth. Many of these areas outside of Manhattan are lower-

income neighborhoods more susceptible to impacts of GHG emissions so cargo bikes targeted 

for deliveries in these areas are highly favorable for environmental justice. Some parks show VMT 
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reductions because they are traversed by highways and bike lanes meaning that a reduction in 

vehicles will show a reduction in travel on the links through those areas. 

Table 4.5 Required bike lane length and average added bike service 

Company Center Borough 
Added Daily Bike 

Volume 

Bike Lane 

Required (feet) 

Added Daily Bike 

Volume per Feet 

FedEx 

1 BK 27,317 1,611.55 182.45 

2 MN 16,151 910.43 190.94 

3 BK & QN 31,340 3,808.40 88.58 

UPS 

1 BK 29,335 3,383.53 93.31 

2 BK & QN 9,940 1,093.50 97.83 

Amazon 

1 BK 69,971 4,075.79 184.81 

2 MN & BX 23,688 2,698.16 94.49 

3 BX 8,853 2,673.88 35.63 

USPS 

MN 36,810 15,899.61 24.93 

BX 18,465 12,772.97 15.55 

BK 37,153 21,143.70 18.90 

QN 14,888 20,908.47 7.68 
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Table 4.6 Vehicular Parcel Volume and VMT Reduction with Cargo Bike Deployment with and 

without Added Bike Lanes 

Current Bike-Accessible Area Served All Eligible Area Served 

Company Vehicular Parcel 

Volume 

Reduction (% 

reduced) 

Daily VMT 

Reduction (% 

reduced) 

Vehicular Parcel 

Volume Reduction 

(% reduced) 

Daily VMT 

Reduction (% 

reduced) 

Added Bike 

Lanes (miles) 

(% increase) 

USPS 104,460 (17.1%) 660 (13.7%) 211,776 (34.7%) 1,305 (27.2%) 13.40 (1.1%) 

UPS 118,860 (24.9%) 3,419 (18.5%) 158,135 (33.1%) 4,831 (26.1%) 0.85 (0.07%) 

FedEx 52,054 (13.6%) 1,378 (8.7%) 126,862 (33.2%) 3,316 (20.9%) 1.20 (0.10%) 

Amazon 44,903 (10.21%) 1,110 (5.0%) 147,415 (33.5%) 6,777 (30.4%) 1.80 (0.15%) 

Total 320,277 (16.76%) 6,566 (10.69%) 644,188 (33.71%) 16,228 (26.41%) 17.23 (1.4%) 
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Figure 4.10 Estimated average daily VMT density reduction after cargo bike deployment for 

all eligible areas. 

In terms of GHG emissions, investing in the additional 17.23 miles of bike lanes could unlock 

additional 9662 VMT savings, which translates to 2.26 MTCE emissions reduction. A breakdown 

of the savings by the company suggests under the current bike lane infrastructure, having UPS 

switch to cargo bikes where eligible would benefit the city the most. If the companies have to be 

prioritized which depots to connect bike lanes first, enabling Amazon’s depots with bike lane 

investments is most urgent as 1.80 miles of added bike lanes can change the daily VMT reduction 

from 5% up to 30.4% savings. 

4.4 Conclusion 

Parcel delivery service plays a crucial role in the e-commerce industry. With e-commerce 

experiencing significant growth in the past decade, parcel delivery operations have expanded 

significantly to meet the demand. However, little work has been done regarding the 



80 Quantifying and Visualizing City Truck Route Network Efficiency 

Using a Virtual Testbed 

quantification of impacts from parcel service at a citywide level. In this study, we build a 

framework to estimate the impact of residential parcel delivery services based on publicly 

available data. Residential parcel service demand is initially generated based on census, land use, 

and postal service information, and proper adjustments are made afterward. By solving CVRP on 

smaller areas using the generated demand, the coefficients of a CA model are calibrated based 

on the sampled results. By applying the calibrated model, both neighborhood-level and citywide 

VMT and associated greenhouse gas emissions can be estimated. 

The model is applied to the whole New York City area. A high level of fitting accuracy is 

demonstrated when fitting the CA model, showing its capability in estimating the tour length 

when less detailed stop information is available, even if it is based on a complicated road 

network. Total VMT is estimated using the fitted CA model, and the local impact of parcel services 

is also investigated based on the result. The model is then applied to evaluate the impact of the 

COVID-19 pandemic on parcel deliveries and to investigate priorities for electric cargo bike 

adoption by borough and by company. The following insights are made based on 50% of existing 

and available parcels switching to cargo bike: 

● 61.44 thousand vehicle-miles (14.38 MTCE) is estimated to be generated from daily parcel

service during an average day in 2021.

● Peak season VMT increased by 12% to 68.84 thousand per day while demand increased only

10.4%, due to the company distribution of the demand increase.

● VMT density due to residential parcel deliveries is most concentrated in upper west side

Manhattan and between Brooklyn and Queens near the JFK airport.

● COVID-19 attributed to up to an additional 1064.33 MTCE in annual GHG emissions due to

increased parcel deliveries in NYC, which is equivalent to emissions from powering 532 homes

for a year.

● Existing bike lane infrastructure can support a substitution of up to 16.76% of parcel deliveries

to be made by cargo bike, which would reduce VMT by 10.69%; most of this decrease would

be drawn from UPS (18.5% VMT reduction) and it should be targeted for electric cargo bike

switching.
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● Investing in 17.23 miles (1.4% of current bike lane infrastructure) of additional bike lanes

could increase the potential parcel delivery substitution from 16.76% up to 33.71% (which

saves an additional 2.26 MTCE per day), which would increase VMT reductions from 10.69%

up to 26.41%. The largest gain in VMT reduction due to these bike lane investments comes

from Amazon, which goes from a 5.0% VMT reduction to a 30.4% reduction due to 1.80 miles

of bike lane investments.

● Spatial analysis reveals that many lower income neighborhoods stand to gain from cargo bike

strategies, including Harlem and areas stretching between Sunset Park to Cypress Hills and

from Bushwick to Maspeth.

Our result shows the importance of the infrastructure related to parcel service. More distribution 

centers are needed to fulfill the growing needs of e-commerce activities while limiting the impact 

of parcel service operations. A more complete bike lane network is needed to accommodate the 

future expansion of cargo bike operation, and more effort is required to improve the bike 

accessibility of distribution centers. 

The developed framework can be further improved when more detailed parcel-related 

information is available, especially delivery information regarding office and commercial 

addresses. The model can be used to evaluate different service changes including the impact of 

added distribution centers and other delivery alternatives. The model does not consider the time 

window limitations, which could underestimate the generated VMT.  
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5 Routing App 

5.1 Development 

Originally designated as a data dashboard, the idea for a truck routing app grew from 

conversations with NYC DOT about the nature of their data and their needs. Since the truck data 

they offered was updated no more than yearly, a dashboard did not seem to be the right 

conceptual fit because they work best to show the dynamic variance of key performance 

indicators on a daily, weekly, or monthly basis. However, the staff indicated that a problem they 

were looking to solve was the lack of digital, dynamic, and publicly available routing for trucks 

through the city. Their current practice is a mixture of the distribution of a pdf which is updated 

every 3-5 years and a telephone bank which drivers could call to speak with experts who would 

direct them turn-by-turn to their destination. Services like Google Maps or Waze fail to meet this 

need because they lack truck specific information. Those apps assume a standard passenger 

vehicle which is not subject to the same height, weight, or route restrictions as trucks are. NYC 

DOT makes available the truck route data in shapefiles, but to our knowledge, no one has yet 

built a freely available routing tool on top of them. Private services exist which perform this task, 

but NYC DOT would like to provide the tool for free, to be able to integrate it with their other 

digital services to maximize benefits to users, and to analyze the data collected to make further 

improvements to the truck ecosystem in New York City. Therefore, an app-based route navigator 

with New York City specific information about truck restrictions emerged as a solution. NYC DOT 

would provide necessary data and design guidance, and the BUILT lab would create the product. 

Using open-source tools, a 45km radius around New York City was extracted from 

OpenStreetMap as a shapefile for manipulation in ArcGIS. The truck route network was added to 

be able to properly prioritize or ban certain links. Truck turn restrictions were considered, but 

technical difficulties prevented implementation.  Layered on top of that were the locations that 

NYC DOT identified as height restricted. Using the Python ArcGIS APIs, a script was written which 

could take any reasonable number of origins and destinations and provide a route to connect 

them which satisfied the input parameters, such as an ability to reorder the stops optimally, 

height restrictions, whether the route needs to return to the origin, and others. Refer to Figure 

2.5 c and d for an example of how our routing tool outperforms a standard Google maps search. 
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To make the backend routing accessible, a front end was built in Kotlin which would prompt the 

user for the input parameters (Figure 5.1a), pass them to the server hosting the routing script, 

and then receive and display the resulting solution (Figure 5.1b). Figure 5.1b also displays as dots 

some of the locations with routing restrictions which are due to tunnels, underpasses, elevated 

subway lines, bridge structures, etc. To best present the solution visually to the user, a hackathon 

was implemented.  

(a) 

(b) 

Figure 5.1 (a) App front end; (b) a route being displayed to the user. 
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5.2 Hackathon 

Planning for the C2SMART Smart Trucking Virtual Hackathon began in earnest in Spring 2022. By 

utilizing administrative resources provided by C2SMART, the BUILT lab was able to lay out and 

develop a plan in conjunction with NYC DOT to host an event which would provide interested 

participants the opportunity to contribute to this project and demonstrate their skills. Two 

promotional videos were produced by the C2SMART lab to generate interest in the event.  Figure 

5.2 is a screenshot from one of the videos.  

Figure 5.2 Screenshot from a Hackathon promotional video. 

Logistic considerations dictated that the event would be virtual, have a hybrid kickoff during a 

session on October 15th at TransportationCamp NYC 2022, and run until the following Sunday. 

The goal was to produce a visualizer that the driver would use while the truck was in motion. The 

judges (Kaan Ozbay, Seth Contreras, Eric Richard, Joaquim Rabinovitch, Zach Miller, and 

Maddalena Romano) represented various stakeholder groups in the New York City trucking 

ecosystem. At the virtual Closing Ceremony, the judges evaluated the submissions with the 

criteria of ease of use, functionality, features, accessibility, style, additional features, and product 

differentiation. The winning submission from Team Braveniuniu comprised of Chuhan Yang, 

Jiayun Sun, and Liang Niu makes use of various python libraries to render a grayscale 3D model 
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of the built environment around the driver providing them with a more realistic depiction of their 

route as they traverse the city. Their contribution is demonstrated in Figure 5.3. At both 

TransportationCamp and the Closing Ceremony, valuable discussions provided insight into 

various stakeholder groups who were interested in the product. These conversations will be used 

to develop a vision for Phase 2 of the Truck Routing App along with implementation challenges 

and avenues for collaboration. 

Figure 5.3 Hackathon contribution. 

5.3 Implementation 

Phase 1 of this project is completed when NYC DOT takes ownership of the app, which includes 

training. Importantly, it has been designed with them in mind. By using the ESRI ArcGIS platform, 

they will be able to edit the network without needing knowledge of the code itself. ArcGIS Pro is 

easy to use and well supported which is why it was chosen over an opensource platform. Network 

editing needs to have a low barrier to entry because of its frequency and the power resting in the 

dynamicity. Being able to add temporary restriction layers for a short term such as a parade or a 

longer event such as construction allows NYC DOT to place more accurate information into the 

hands of the truck drivers in the city. If the situation called for it, the truck routes themselves or 

the time-of-day traffic fluctuations could all be altered through the user interface.  

Another benefit to the NYC DOT would be that since the data would flow across their servers, 

they would be able to analyze it to learn about truck patterns. Being a responsible entity, they 

would practice good data governance by anonymizing and securing the data. Getting origin-

destination and route choice data for trucks traveling through New York City would be incredibly 

valuable. Currently, very little of this type of data exists, so it must be estimated. Even small 
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amounts of collected data here would be very useful in validating the larger scale estimations. 

This project also works towards accomplishing the goals laid out in the Delivering New York, 

Smart Truck Management Plan: E6, SR1, SR7, SR9, PK4, and PK5.   

Finally, the intention is not that this project is handed off and shelved. Initial conversations with 

members of several different sectors of the trucking community have shown that there is 

enthusiasm for this tool. We are planning phase 2 of this project to manifest the potential here, 

and the continued support of the community will be essential for securing the resources needed 

to make that happen. Because the app has access to the data which fuels the other half of this 

project, there is potential to use it in a variety of practical ways. For example, the app can 

estimate the CO2 emissions of the truck and prescribe to the driver a cleaner route.  

A potential idea is to develop a pilot program where a select number of drivers test the 

application. NYU would collect data about their routing behavior, which is valuable for future 

research to build with, the driver would receive the benefit of truck specific routing, and NYC 

DOT would be able to evaluate how to grow and scale the app for larger implementation.  
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6 Summary of research outputs and tech transfer 

6.1  Summary of Findings and Recommendations 

Freight Truck Tours 

● 333,843 trucks were assigned on daily basis producing 2,573,441 trips

● The total estimated daily VHT in New York City is 2.49M veh-hours with 0.65M veh-hours of

that being service time.

● The total estimated daily emission of CO2 is 5640 metric tons of carbon equivalent (MTCE).

● At the borough level, peak service time density, and therefore likely truck parking issues,

occurs in Brooklyn from 7-10pm. Manhattan and Brooklyn both experience service time

densities greater than 130 hours per square mile in the Midday, PM, and Nighttime blocks.

● NAICS Industries 444, 441, and 425 contribute the most average daily CO2 Emissions and VMT

● If vehicle capacity was shrunk by 20%, VHT and CO2 emissions would increase to 3.12M veh-

hours and 7.05 MTCE, but damage to both the Manhattan Bridge and Queens Midtown

Tunnel from truck weight in both directions would fall between 45 and 47%

Parcel Delivery 

● 61.44 thousand vehicle-miles (14.38 MTCE) is estimated to be generated from daily parcel

service during an average day in 2021.

● Peak season VMT increased by 12% to 68.84 thousand per day while demand increased only

10.4%, due to the company distribution of the demand increase.

● VMT density due to residential parcel deliveries is most concentrated in Hell’s Kitchen in

Manhattan extending up the Upper West side and in New Lots in Brooklyn near the Queens

boundary.

● COVID-19 attributed to up to an additional 1064.33 MTCE in annual GHG emissions due to

increased parcel deliveries in NYC, which is equivalent to emissions from powering 532 homes

for a year.
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● Existing bike lane infrastructure can support a substitution of up to 16.76% of parcel deliveries

to be made by cargo bike, which would reduce VMT by 10.69%; most of this decrease would

be drawn from UPS (18.5% VMT reduction) and it should be targeted for electric cargo bike

switching.

● Investing in 17.23 miles (1.4% of current bike lane infrastructure) of additional bike lanes

could increase the potential parcel delivery substitution from 16.76% up to 33.71% (which

saves an additional 2.26 MTCE per day), which would increase VMT reductions from 10.69%

up to 26.41%. The largest gain in VMT reduction due to these bike lane investments comes

from Amazon, which goes from a 5.0% VMT reduction to a 30.4% reduction due to 1.80 miles

of bike lane investments.

● Spatial analysis reveals that many lower income neighborhoods stand to gain from cargo bike

strategies, including Harlem and areas stretching between Sunset Park to Cypress Hills and

from Bushwick to Maspeth

6.2  Shortcomings

Freight Truck Tours 

• Some new, large warehouse locations have come online recently which could affect the

location of the designated warehouse zones. Additionally, warehouse zones were

selected based upon employment data instead of FTG, so large numbers of smaller

warehouses would be selected over fewer large, efficient, and automated warehouses.

Given the relatively small number of trucks taking these trips though, this is not believed

to meaningfully impact the results.

• The primary weakness of the work is the overestimation of trucks between Manhattan

and Brooklyn as well as between Manhattan and Queens. Future efforts could look to

improve these crossings by adding an additional parameter to the distribution equation

which could increase the penalty for these crossings to better mirror the real-world

penalty drivers face from congestion on these bridges.

Parcel Delivery 

● A small portion of packages are delivered on weekends, especially near the holiday season.

Data from companies about a full week’s distribution could increase the accuracy of the

conclusions.
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● Similar to above, new warehouses such as the Amazon Red Hook facility have recently come

online. Future efforts will update the active locations.

● Future efforts could consider the impacts of the NYC DOT Microhubs Pilot Program (NYC DOT

2023).

6.3 Research outputs

As an outcome of this research project, several research outputs were produced along with 

dissemination. This section summarizes those results. 

Table 6.1 Summary of research outputs 

Output type Description Link/source 

Paper Yang, H., Landes, H., Chow, J.Y.J., 2023. A large-
scale analytical residential parcel delivery 
model with cargo bike substitution in New York 
City. Proc. 102nd Annual Meeting of the TRB, 
Washington, DC. 

https://annualmeeting.mytr
b.org/OnlineProgramArchiv
e/Browse?ConferenceID=99
9 

Paper Yang, H., Chow, J.Y.J., 2023. A large-scale 
analytical residential parcel delivery model 
with cargo bike substitution. 12th Intl 
Conference on City Logistics, Bordeaux, France. 

Paper Yang, H., Landes, H., Chow, J.Y.J., A large-scale 
analytical residential parcel delivery model 
with cargo bike substitution. IJTST, in press. 

https://www.sciencedirect.
com/science/article/pii/S20
46043023000692 

Paper Davis, H., Landes, H., Namdarpour, F., Yang, H., 
Chow, J.Y.J., Tour-Based Entropy Maximization 
Algorithm for Constructing a Truck Synthetic 
Population from Public Data. In preparation. 

https://zenodo.org/record/
5517983#.YUozC7hKg2w 

Data Estimation of Freight Trips Produced and 
Attracted in NYC 

https://c2smart.engineerin
g.nyu.edu/c2smart-data-
dashboard/#daily-freight-
trip-in-new-york-city 

https://annualmeeting.mytrb.org/OnlineProgramArchive/Browse?ConferenceID=999
https://annualmeeting.mytrb.org/OnlineProgramArchive/Browse?ConferenceID=999
https://annualmeeting.mytrb.org/OnlineProgramArchive/Browse?ConferenceID=999
https://annualmeeting.mytrb.org/OnlineProgramArchive/Browse?ConferenceID=999
https://www.sciencedirect.com/science/article/pii/S2046043023000692
https://www.sciencedirect.com/science/article/pii/S2046043023000692
https://www.sciencedirect.com/science/article/pii/S2046043023000692
https://zenodo.org/record/5517983#.YUozC7hKg2w
https://zenodo.org/record/5517983#.YUozC7hKg2w
https://c2smart.engineering.nyu.edu/c2smart-data-dashboard/#daily-freight-trip-in-new-york-city
https://c2smart.engineering.nyu.edu/c2smart-data-dashboard/#daily-freight-trip-in-new-york-city
https://c2smart.engineering.nyu.edu/c2smart-data-dashboard/#daily-freight-trip-in-new-york-city
https://c2smart.engineering.nyu.edu/c2smart-data-dashboard/#daily-freight-trip-in-new-york-city
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Data NYC truck tour flows https://zenodo.org/record/
7926986 

Data Parcel VKT https://zenodo.org/record/
7927126 

Code Truck tour distribution algorithm https://github.com/BUILTN
YU/Iterative-Balancing-for-
Entropy-Maximization 

Code Truck routing app https://github.com/BUILTN
YU/Frieght-Truck-Routing-
App 

Hackathon C2SMART Virtual Hackathon https://c2smart.engineerin
g.nyu.edu/smart-trucking-
hackathon/   

https://www.youtube.com/
watch?v=MB8sHWRWpY0 

Presentation “NYC FREIGHT: DATA ANALYSIS TO BUILD A 
SYNTHETIC POPULATION”, ITS-NY Yearly 
Meeting, Saratoga, NY, June 16, 2022 

https://www.abstractsonlin
e.com/pp8/?__hstc=19404
1586.9ad974a5999e3a9e20
2e99f21eba80a4.15986486
81888.1630698234610.163
0762393840.57&__hssc=19
4041586.1.1630762393840
&__hsfp=2759698710&hsCt
aTracking=76a3f7ff-51d5-
4ec3-9afc-
6681cc8dc243%7C1799fe6c
-2007-47fc-9053-
bd9abe03f130#!/10390/pre
sentation/6213 

Presentation “NYC FREIGHT: DATA ANALYSIS TO BUILD A 
SYNTHETIC POPULATION”, WCTR Virtual 
Meeting 2022 - Freight Modelling Session, 
Virutal, July 29, 2022 

Presentation “Inverse optimization applications in data-
constrained freight systems”, TU Delft Freight 

https://zenodo.org/record/7926986
https://zenodo.org/record/7926986
https://zenodo.org/record/7927126
https://zenodo.org/record/7927126
https://github.com/BUILTNYU/Iterative-Balancing-for-Entropy-Maximization
https://github.com/BUILTNYU/Iterative-Balancing-for-Entropy-Maximization
https://github.com/BUILTNYU/Iterative-Balancing-for-Entropy-Maximization
https://github.com/BUILTNYU/Frieght-Truck-Routing-App
https://github.com/BUILTNYU/Frieght-Truck-Routing-App
https://github.com/BUILTNYU/Frieght-Truck-Routing-App
https://c2smart.engineering.nyu.edu/smart-trucking-hackathon/
https://c2smart.engineering.nyu.edu/smart-trucking-hackathon/
https://c2smart.engineering.nyu.edu/smart-trucking-hackathon/
https://www.youtube.com/watch?v=MB8sHWRWpY0
https://www.youtube.com/watch?v=MB8sHWRWpY0
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
https://www.abstractsonline.com/pp8/?__hstc=194041586.9ad974a5999e3a9e202e99f21eba80a4.1598648681888.1630698234610.1630762393840.57&__hssc=194041586.1.1630762393840&__hsfp=2759698710&hsCtaTracking=76a3f7ff-51d5-4ec3-9afc-6681cc8dc243%7C1799fe6c-2007-47fc-9053-bd9abe03f130#!/10390/presentation/6213
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Lab (under Lori Tavasszy), Delft, The 
Netherlands, Apr 11, 2023 

Presentation “Parcel and truck delivery modeling research 
for NYC”, workshop at NYCDOT, NYC, May 2, 
2023 

Presentation “Building a Synthetic Freight Population from 
Open Data in NYC”, ITS-NY Yearly Meeting, 
Saratoga, NY, June 15, 2023 

Presentation “Building a Synthetic Freight Population from 
Open Data in NYC”, webinar from C2SMART, 
June 13, 2023 

https://www.youtube.com/
watch?v=-IIHnO2En-s 

Broader Impacts 

In addition to the direct dissemination and technology transfer, this research has led to a number 

of broader impacts.  

Student Training and involvement: 

Through the Summer Undergraduate Research Program, Jack Gazard was trained. In addition to 

the main research team, we participated in the ARISE program to expose K-12 STEM students to 

this research and projects from our lab. Materials from this project have been included in Dr. 

Chow’s undergraduate course, for example, the use of the NYC shapefile for routing in ArcGIS as 

part of a lecture on routing algorithms.  

Public Engagement: 

The team presented our work on the Truck Routing App and Commodity Flow data at the 2022 

Tandon Research Expo (April 2022), which exposes our project to the local community as well as 

to other students at NYU Tandon. The topic was “NYC Freight: Routing App and Data Analysis”.  

Hector Landes led a seminar entitled “Diving into open data - What is available and how to use them 

for transportation research” which was based around his work on the Commodity Flow product. 

Those slides and presentation are available on the C2SMART Student Learning Hub.    

Haggai Davis, III led a discussion about the Truck Routing App and what would need to be included 

in it at the unconference TransportationCamp NYC 2022. 

https://www.youtube.com/watch?v=-IIHnO2En-s
https://www.youtube.com/watch?v=-IIHnO2En-s
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As part of recruitment for the Hackathon, the Center produced videos and a website. 

https://www.youtube.com/watch?v=MB8sHWRWpY0   

https://c2smart.engineering.nyu.edu/smart-trucking-hackathon/  

Industry Engagement:  

The team has presented the research to industry through the dissemination efforts mentioned 

above. In addition, the judges from the Hackathon comprised members of various public and 

private agencies related to trucking in NYC. Their interest has attracted attention from other 

related agencies leading to the decision to produce an additional, digestible document focusing 

on the Truck Routing App.  

This project has resulted in developing data-driven and modeling insights to support NYC DOT’s 

efforts to manage the growing freight demand in NYC. It paves the way toward a future setup for 

an “Urban Freight Lab: East Coast” analog to the lab at University of Washington under Prof. Anne 

Goodchild. 

https://www.youtube.com/watch?v=MB8sHWRWpY0
https://c2smart.engineering.nyu.edu/smart-trucking-hackathon/
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