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Literature Review on Smart Transportation Applications 

Computer vision is reshaping the transportation industry and bringing its unique capabilities to the 

table to enable next generation smart transportation systems in many different ways. The state-of-the-art of 

IoT strategies and computer vision techniques is well-studied in the literature, some has already been tested 

and used for certain use cases, but this technology has not widely applied in the day-to-day operation to 

existing transportation infrastructures yet. A comprehensive review of both state-of-art and state-of-

practices as well as gaps in terms of use cases and applications is needed. In addition, several major 

challenges that hinder further advances in computer vision-based smart transportation application 

development remain. This includes how to develop the transportation-specific computer vision techniques 

through advanced artificial intelligence (AI) and machine learning (ML) techniques; how to make use the 

outputs of the computer vision-based systems to enhance traffic safety and situational awareness; how to 

customize the solutions based on different objectives from the agencies and road users; how to improve the 

accuracy of these systems under conditions such as adverse weather; and finally, how to maintain the cost-

effectiveness of these computer vision-based transportation solutions. 

We conducted a multi-facet literature review that first examined the current use cases and 

transportation related applications that utilize the computer vision methodologies with a focus in urban 

areas, especially work zone and safety applications, and evaluated their applicability to various tasks of 

urban analytics, state of adoption, and limitations. The literature review then assessed if and how 

transportation equity is considered in the current state of adoption of computer vision/AI technology, for 

example, whether state-of-the-art object detection systems have equitable predictive performance on 

pedestrians with different skin tones. 

Smart Transportation Applications Using Computer Vision 

Many computer vision approaches have been introduced for vehicle detection. Based on these 

approaches, numeric research has been focusing on traffic counting and traffic monitoring, including 

density and speed estimation, congestion detection and so on. For example,  Muhammad (1) created a 

simple vehicle counting system to help human in classify and counting the vehicles that cross the street. 

YOLOv3 was used for object detection and pre-trained model was applied using Common Objects in 

Context (COCO) dataset, a large-scale object detection, segmentation, and captioning dataset that has 

annotations for 80 different objects. The system achieved a detection accuracy as high as 96.96% with 

‘motorcycle’ and ‘car’ being the most accurate and ‘truck’ and ‘bus’ being the worst accurate vehicle 

category. Most of the studies used a centralized detection system with a few utilizing edge computing. Liu 

et al. (2) proposed a two-tier edge computing based model for congestion and speed detection. They build 

their own video dataset using an IP-based camera. They also compared the edge and cloud schemes with 

the hybrid scheme (edge + cloud) and found that under good weather condition, the performance of the 

edge scheme is better than that of the cloud scheme while under bad weather condition (i.e., snowy), the 

performance of the cloud scheme is better than that of edge scheme. 

Considerable development efforts have been made into autonomous driving using sensing 

technology and computer vision to find road obstacles and analyze the current traffic flow and surrounding 

conditions. Many review papers have been developed, for instance, (3) evaluated the technologies used to 

advance autonomous driving, including CNN, SSD, R-SNN, R-FCN and so on. The review paper identified 

that recurrent neural network (RNN) could be replaced by long-short term memory (LSTM) in terms of 

autonomous driving scenes because it could bring more efficiency. The authors tackled the existing works 

of these methods and concludes selected approaches to point their strengths and gaps. This study 

highlighted that since autonomous driving is fairly new to society, it is important to improve the weaknesses 

of scientific methods to help them become a safer option. Some studies focus on enhancing the 3D object 

detection. Peng et al. (4) introduced a a lightweight Instance-Depth-Aware (IDA) 3D Detection to 

approaching object detection in autonomous driving which accurately predicted the depth of the 3D 

bounding box's center by instance-depth awareness. Their method focused on objects and directly performs 
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the instance depth regression and paid more attention on far-away objects by disparity adaptation and 

matching cost reweighting.  

One of the vital application areas in smart transportation is accident detection. Ijjina  et al. (5) 

developed a neoteric framework for detection of road accidents using road-traffic CCTV surveillance 

footage. This work was evaluated on vehicular collision footage from different geographical regions under 

various ambient conditions such as harsh sunlight, low visibility, daylight hours, snow and night hours. The 

dataset includes accidents in various ambient conditions such as harsh sunlight, daylight hours, snow and 

night hours. All videos were compiled from YouTube and were around 20 seconds. Their proposed 

framework was able to detect accidents correctly at a 71% detection rate with 0.53% false alarm rate on the 

accident videos. Another interesting research (6) used eye blink detection system based on object tracking 

and machine learning to alert drivers with high efficiency. Authors used real life dataset of drivers when 

they are commuting to a certain destination. This system had an efficiency of 80%, which means it could 

detect about 8 eye blinks in 10 actual blinks. 

Various studies have also been conducted on parking occupancy detection using computer vision. 

Traditional approaches for parking occupancy detection include background subtraction and hand-crafted 

feature (e.g., edges, color, texture) extraction (7). Single shot detector (SSD) (8), You Look Only Once 

(YOLO) (9) and its subsequent versions, and CNN-based frameworks (10) have achieved state-of-the-art 

accuracies in image classification and object detection. For instance, Acharya and Yan (7) used deep 

Convolutional Neural Networks (CNNs) trained from public datasets (PKLot) and a binary Support Vector 

Machine (SVM) classifier to achieve outdoor parking occupancy detection. The detection accuracies of the 

model are reported to be 99.7% and 96.7% for a public dataset and for a new dataset generated by the 

authors. Amato et al. (11) developed a solution for visual parking space occupancy detection using a deep 

CNN model robust to light condition changes, presence of shadows, and partial occlusions. The authors 

tested two CNN architectures, mAlexNet and mLeNet, based on (10) and (12) and reported an overall 

accuracy 82.9% on CNRPark, and 90.4% on PKLot dataset using mAlexNet. Bulan et al. (13) presented a 

video-based real-time on-street parking occupancy detection system using background subtraction, motion 

detection, and occlusion detection. To eliminate unreliable frames and regions for vehicle detection, they 

applied occlusion detection based on the position of a foreground blob with respect to a parking region. The 

parking occupancy detection method performs in real time with a 91% average detection accuracy for each 

camera. The authors stated that the video-based approach could replace the in-ground sensor approach since 

the former has a higher detection accuracy than that of in-ground sensors in San Francisco.  

A natural value-added option to on-street parking occupancy detection is to perform illegal parking 

detection simultaneously. For example, Bulan et al. (13) integrated parking angle violation detection, 

parking boundary violation detection, and exclusion zone violation detection, into their parking occupancy 

detection model. Other than fixed traffic or surveillance cameras, Gkolias and Vlahogianni (14) developed 

data science models to detect empty on-street parking spaces in urban networks based on in-vehicle 

cameras. Ranjan et al. (15) introduced StreetHAWK that leverages the rear camera of a dashboard mounted 

smartphone to identify potential parking violations. Other value-added features can be considered for 

adoption, such as bus or bike lane occupancy and violation detection. In the literature, most studies focus 

on parking lot usage detection (7, 11, 16-19) but illegal parking detection is mostly needed on-street. Only 

a few studies (13, 14) have tested for on-street parking occupancy of curb lanes. Previous studies have often 

relied on moderate to high resolution videos (over 480p) and consecutive video frames (>1 frame per second 

(fps)) (15, 17, 20-22) and many models use vehicle tracking (17) (20, 21, 23) for event detection. Since 

public traffic surveillance cameras suffer from low image resolution and frame rate, an effective solution 

that accounts for this feature is needed. 

Besides vehicle detection, enhancing the safety of vulnerable road users (VRUs) is also of critical 

importance to achieving the objectives of USDOT's National Roadway Safety Strategy (NRSS), and vision 

zero goals. According to data from the National Highway Traffic Safety Administration (NHTSA), in 2020 

there were 10,626 traffic fatalities in the United States at roadway intersections, including 1,674 pedestrian 

and 355 bicyclist fatalities. These fatalities at intersections represent 27% of the total of 38,824 road traffic 

deaths recorded in 2020. Previous detection methods for VRUs, especially pedestrians, mainly using 
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infrared sensors, radar sensors, thermal imaging, microwave sensors and so on. Figure 1 shows the 

evolution of pedestrian detection technologies and vision-based detection system showed an increasing 

trend in recent years. More details about pedestrian detection deployment can be found in the interactive 

timeline and map visualizations developed by the C2SMART research team for USDOT Intelligent 

Transportation Systems Joint Program Office (ITSJPO) at https://www.itskrs.its.dot.gov/decision-support. 

Besides the general VRU detection application, some studies also extended the use case to social distancing 

measuring or pedestrian intention predictions (24, 25). Zuo et al. (24) developed a reference-free video-to-

real distance approximation-based urban social distancing analytics. Their method measured pedestrian 

distancing and density at crosswalks and sidewalks in complex urban environment to quantify social 

distancing to better understand the new norm of urban mobility amid COVID-19 pandemic. Wang et al. 

(25) added a Temporal Attention (TA) to the encoding and decoding layers of the Generative Adversarial

Network (GAN) to improve pedestrian intention prediction. Such prediction can be further incorporated

into various applications such as jaywalker detection and cooperative perception. Review of the literature

also revealed that only a few studies centered on detecting people with mobility aids. Kollmitz et al. (26)

collected of over 17,000 annotated images from a hospital in Frankfurt, Germany and developed a model

to detect people with mobility aids to benefit robots operating in hospitals. Their dataset contained five

classes, including pedestrian, person in wheelchair, pedestrian pushing a person in a wheelchair, person

using crutches, and person using a walking frame. The study only focused on indoor environment and its

performance on outdoor environments such as crosswalks is unknown.

Figure 1. Timeline of selected pedestrian detection technology deployments 

The literature review also revealed that progress has been made in computer vision, but mainly on 

pedestrians and vehicles. Computer vision for other use cases, such as work zone detection, is still very 

limited. Most existing studies focus on off-street work zones or a single type of work zone object (e.g., 

traffic cones). In addition, almost all of the existing literature emphasized that the main challenge for work 

zone detection is the scarcity of publicly available, large-scale, domain-specific, annotated dataset of work 

zone imagery. For example, Nath and Behzadan (27) used a CNN model that laid out a framework for 

detecting the most common types of off-street construction objects, namely, buildings, equipment, and 

workers (Figure 2 (a)). They recognized the lack of publicly available annotated work zone imagery dataset 

and introduced a systematic approach to visual data collection through crowdsourcing and web-mining and 
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annotating the dataset for AI model training to overcome the limitation. The results showed that models 

perform best when trained on combined (crowdsourced and web-mined) data. They collected 3,500 images 

with 11,500 work zone objects and tested both YOLO-v2 and -v3. The study found the best-performing 

model is YOLO-v3, which had a 78.2% mAP. Duan et al. (28) also stated that the lack of large-scale, open-

source dataset for the construction industry limited the development of computer vision algorithms as they 

are often data-hungry. This study developed a new large-scale work zone image dataset, Site Object 

Detection dAtaset (SODA), which was collected from the real construction site and contained 15 types of 

object classes categorized by workers, materials, machines, and layout. A total of 19,846 images including 

286,201 objects were mined and annotated. Their model achieved a maximum mAP of 81.47%. They also 

suggested field data acquisition could adopt methods such as using drones, handheld monocular camera 

shooting, and construction site monitoring video. The limitation of this dataset is it is mainly for off-street 

work zones and may not be suitable for detecting work zones that occur on the roadways. A recent study 

conducted by Katsamenis et al. (29) used Yolov5 for traffic cone detection using a training dataset of 500 

traffic cones images (Figure 2 (b)). The data used in this paper was collected and manually annotated under 

the framework of the H2020 HERON project. The results showed that the proposed computer vision model 

could achieve a 91% accuracy in detecting traffic cones. However, work zones, especially urban work zones 

often composed by multiple types of construction objects and has no standard work zone set up, single 

object type detection may not be as effective as expected in such cases. This demands the needs of building 

and sharing a comprehensive publicly available, domain-specific, annotated dataset of urban work zone (on 

urban streets and sidewalks) imagery. 

(a) Work zone detection for off-street sites (27) (b) traffic cone detection (29)

Figure 2. Examples of work zone detection research 

Additionally, we found most of the existing studies rely on specific cameras while a few of them utilized existing intelligent 

transportation systems (ITS) infrastructures such as closed-circuit television (CCTV) cameras (5, 24, 30).  
Table 1 synthesizes some of the most recent literature on smart transportation applications using 

computer vision. While not exhaustive, it provides a representative sample of recent research efforts. 

Table 1 Summary of recent literature on smart transportation applications using computer vision 

Study Year Application(s) Goal Method Training 

image 

dataset 

publicly 

available? 

(31) 2019 Traffic monitoring, 

Traffic count 

Propose a vision-based traffic monitoring 

system detect the number of vehicles that 

monitors the density of the roads. 

Haar feature based 

Adaboost classifier 

and virtual 

No 
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detection lines 

(VDL) 

(2) 2021 Traffic monitoring 

(speed estimation & 

congestion detection) 

Propose a two-tier edge computing based 

model for congestion and speed detection 

Gaussian Mixture 

Model and Global 

Foreground 

Detection 

No 

(1) 2020 Traffic counting Aim to create a simple vehicle counting 

system to help human in classify and 

counting the vehicles that cross the street. 

YOLOv3 & 

counting using 

coordinates or 

location of the 

vehicles 

Yes 

(32) 2020 Traffic counting Develop a video-based system that can be 

used to count the road traffic, and it does 

not disturb traffic flow 

Background 

extraction 

Yes 

(33) 2022 Traffic Counting Develop small, location-specific object 

detection models for traffic counting 

without needing manual data labeling 

location specific 

models 

Yes 

(30) 2020 Traffic counting Incorporate an intelligent traffic light 

controlling system using an algorithm that 

consumes real data from closed-circuit 

television (CCTV) cameras 

Neural network-

based models 

Yes 

(34) 2020 Pedestrian detection Develop an accurate computer vision-

based system to track and count passengers 

for both indoor and outdoor scenarios.  

Support vector 

machine (SVM) 

classifier and 

histograms of 

orientated gradient 

descriptor 

Yes 

(24) 2021 Pedestrian 

detection/Social 

distancing 

Measure pedestrian distancing and density 

to quantify social distancing to better 

understand the new norm of urban mobility 

amid the pandemic 

Reference-free 

distance measure 

algorithm & 

YOLOv3 

No 

(25) 2022 Pedestrian intension 

estimation 

Add a Temporal Attention to the encoding 

and decoding layers of the Generative 

Adversarial Network to improve pedestrian 

intention prediction 

Generative 

Adversarial 

Network based on 

Temporal 

Attention (TA-

GAN) 

Yes 

(26) 2019 People with disabilities Detect people with mobility aids to benefit 

robots operating in indoor environment 

such as hospitals. 

Deep 

convolutional 

neural network 

(CNN) 

Yes 

(35) 2022 Parking 

management/Illegal 

parking 

Develop a computer vision–based data 

acquisition and analytics approach for curb 

lane monitoring and illegal parking impact 

assessment 

YOLOv3 & Mask 

R-CNN

Yes 

(36) 2018 Parking management Develop data science models for the 

detection of empty on-street parking spaces 

in urban road networks based on data 

provided by invehicle cameras 

CNN Yes 

(27) 2020 Work Zone Detection 

(off-street) 

Detect consturction objects at off-street 

construction sites 

YOLOv2/v3 Yes 

(28) 2022 Work Zone Detection 

(off-street) 

Develop a large-scale off-street 

construction site image dataset 

YOLOv3/v4 Yes 

(29) 2022 Work Zone Detection 

(Traffic cone only) 

Detect construction buildings, equipment, 

and workers 

YOLOv5 Yes 

(37) 2021 Autonomous driving Eevaluate the technologies used to advance 

autonomous driving, including CNN, SSD, 

R-SNN, and R-FCN.

CNN Yes 

(4) 2020 Autonomous driving Introduces Instance-Depth-Aware (IDA) 

3D Detection as to approaching object 

detection in autonomous driving which 

IDA 3D Detection Yes 
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accurately predicts the depth of the 3D 

bounding box's center by instance-depth 

awareness 

(3) 2020 Autonomous driving Review and develop advanced 

technologies for the visual sensing system 

of autonomous vehicles from standard 

computer vision to event-based 

neuromorphic vision 

CNN & 

Neuromorphic-

vision algorithms 

Yes 

(5) 2019 Accident Detection Develop a neoteric framework for 

detection of road accidents using road-

traffic CCTV surveillance footage 

Mask RCNN No 

(38) 2020 Accident detection Detection of workers and heavy vehicles, 

three-dimensional (3D) bounding box 

reconstruction, depth and range estimation 

in the monocular 2D vision, and 3D spatial 

relationship recognition. 

CNN Yes (for 

COCO) No 

(for KITTI) 

(6) 2017 Accident detection Develop an eye blink detection based alert 

system with high efficiency.  

Eye blink 

detection 

No 

(39) 2019 Flood 

management/monitoring 

Present a systematic review of the 

literature regarding IoT-based sensors and 

computer vision applications in flood 

monitoring and mapping 

Artificial Neural 

Networks and so 

on 

Yes 

Equity and Fairness in AI-based Transportation Solutions 

Technological development happens fast and is constant; no sooner is an innovation developed 

than it is being iterated and evolved. In broad strokes, this is good news: it means that we are always 

getting faster, safer, more efficient, and more sustainable. But within the field of mobility, compared to 

traditional transportation solutions, these new innovations rarely evaluate equitable impact across 

populations, leaving some groups behind or, in the worst cases, constructing unforeseen barriers. These 

negative impacts are not necessarily the result of malicious intent but rather are due to the lack of an 

existing set of clearly defined transportation equity standards that can be employed to assess new 

innovations during development. By ensuring the incorporation of equity perspectives for related policies, 

and identifying equity methods and metrics for use in technological development and evaluation of 

emerging transportation technologies, we can take significant steps toward mitigating negative effects and 

balancing uneven benefits in an early stage.  

The USDOT Equity Action Plan (EAP) highlights four primary drivers of opportunity within 

transportation: wealth creation, power of community, interventions, and expanding access. These 

categories reflect the reality of transportation as a complex system-of-systems which interacts with almost 

every element of life: employment and education, health and nutrition, social and community life, justice 

and policing, and of course, mobility. This complicates the creation of any single set of metrics to 

determine whether or not a service, project, plan or policy is “equitable,” as the needs, limitations, and 

uses for transportation for any given community are extraordinarily diverse. This is true not just across 

groups, but within them—for example, the accessibility requirements for a blind person with a service 

animal may differ from a blind person who uses a cane. It is therefore necessary to develop a framework 

which is flexible enough to be adapted to different types of technology and mobility innovations and 

future evolutions of the same, inclusive of all travelers and their diversity of need, and can provide 

guidance for industries and agencies seeking to evaluate, iterate, and implement new technologies.  

As the academic literature on transportation equity has grown and equity-related assessments 

have increased in agency-supported projects and pilots related to emerging transportation technologies, it 

is crucial to systematically review how equity has been considered and evaluated in the planning or 

operations of mobility and safety innovations, especially for AI-based transportation solutions. 

AI has been involved in almost all aspects of modern life, and the application of AI heralds 

advantages including lower cost, higher efficiency and fewer risks, but can also exacerbate pre-existing 

inequities due to the immature understanding of technology. Particularly since it can be deployed in tasks 
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related to safety (e.g., wrong-way driving detection), it is essential to assess its equity issues.  Equity 

problems stemming from AI in the transportation domain have not been well studied; however, it is 

possible to extrapolate from other domains’ experience in AI equity to equip the agencies, industry and 

academic researchers with essential knowledge of potential equity issues that will arise with the 

emergence of AI systems in the transportation field. It is worth noting that although fairness has a slightly 

different definition than equity, it is a more common term used across the AI domain to express equity 

concerns, as equity is defined as the quality of being fair and impartial. Therefore, in this study we treated 

fairness as a part of the broader definition of equity. 

Real-world examples of AI equity issues in transportation domain - Automated vehicle safety 

Automated vehicle aims to operate in a manner equivalent to a human driver and make its own decisions 

during driving. The US National Highway Traffic Safety Administration (NHTSA) released a checklist 

that requires semi-autonomous and driverless vehicles to make conscious and intentional ethical 

judgments and decisions, and the algorithm for solving these situations must be disclosed to the USDOT 

through the NHTSA (40). However, how to ensure equity, especially social equity (e.g., detecting 

different race pedestrians equally accurate), in training data and in design of the AI decision-making 

algorithm responding to safety risk situations, are not addressed directly. The potential consequences can 

be severe (e.g., lead to an actual crash). 

Real-world examples of AI equity issues in non-transportation domains 

Numerous AI applications have been developed, such as applications for face and voice recognition, 

automated speech recognition (ASR) and so on. But these applications often fall short; famously, a photo 

application developed by Google in 2015 with an automated labeling function was found to make a severe 

mistake in labeling African American people as “gorillas” (41). Shankar et al. (42) reviewed and analyzed 

two major open-sourced image galleries and found that these images “appear to exhibit an observable 

Americentric and Eurocentric representation bias”. A novel attack method (43) assessed gender and racial 

bias in the speech recognition system and found that the American-English-Male chatter noise attack 

success rate is greater than Nigerian-Female and Korean-Female noise by 112% and 121% on Google 

Home Mini smart speaker.  

It is worth noting that although these biases were found in AI systems outside the transportation 

domain, it is these same AI technologies which are applied in transportation systems for such tasks as 

pedestrian detection and speech recognition for train operators’ voices. Practitioners in transportation 

should therefore be aware of these potential biases and plan to include an equity assessment when using 

AI-based transportation solutions.  

Data-, model-, and systemic bias in AI 

Equity issues identified based on existing literature in various AI models and their applications can be 

generally summarized into three major categories: bias in data, bias in model, and systemic bias. We 

inherited these first two bias categories introduced in (44). The new systemic bias category has been 

identified from the literature review in this study.  

Bias in data can be learned by models, in turn represented, transmitted, and amplified in model 

outcomes. In addition, some models can generate biased performance even using unbiased data owing to 

design features as designers may transmit their own conscious and subconscious biases. Systemic bias is 

related to macroscopic conditions such as existing and historical social biases and is significantly 

impacted by the fact that the most advanced AI technologies are in the hands of giant technology 

companies. The three categories have mutual effects on each other, which means that all these biases in a 

real-world AI system should be considered and analyzed accordingly. Figure 3 lists the types of bias in AI 

systems that can result in inequity.  
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Figure 3 Types of Bias in AI Systems that Can Results in Inequity (adopted and modified based on 

(44) and review of (45) in this study)

AI-based transportation solutions categorize equity assessment approaches into three different categories 

based on processing stages (46):  

• Pre-processing. Humans generate data via designs for different purposes; thus, bias is inevitable

(46). Methods like data documentation can provide information on the dataset generation method,

features, motivations, and potential biases (47).

• In-processing. In-processing methods can enhance the AI models to remove bias to avoid training

inequity (46). Combining common-used fairness metrics as convex constraints into the

classification model can be used to guarantee any classification is fair (48). An adversarial

learning framework (47) can be used to mitigate the unwanted biases from the data.

• Post-processing. Post-processing techniques try to access the untouched dataset that was not in

the training set to adjust the model (46). A fairness criterion (48) can be built to adjust learned

predicter to remove unfair results according to the observed outcomes.

Although there is no current standard to directly assess equity in AI-based solutions, we

summarized some of the most widely-used measures with the explanations inspired by (44, 49) that can 

be used for potential transportation applications (TABLE 2).  

TABLE 2 Equity Measures Used in AI-Based Systems 

Name Type Objectives Source 
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Equalized Odds Group 
The protected and unprotected groups should have equal 

rates for true positives and false positives. 
(47, 49) 

Equal 

Opportunity 
Group 

The equal opportunity definition states that the protected 

and unprotected groups should have equal true positive 

rates. 

(47, 49) 

Demographic 

Parity 
Group 

The likelihood of a positive outcome should be the same 

regardless of whether the person is in the protected (e.g., 

female) group. 

(49, 50) 

Fairness through 

Awareness 
Individual 

Any two individuals who are similar with respect to a 

similarity (inverse distance) metric defined for a particular 

task should receive a similar outcome. 

(44, 50) 

Fairness through 

Unawareness 
Individual 

An algorithm is fair if any protected attributes are not 

explicitly used in the decision-making process. 
(50) 

Treatment 

Equality 
Group 

Treatment equality is achieved when the ratio of false 

negatives and false positives is the same for both protected 

group categories. 

(51) 

Test Fairness Group 

For any predicted probability score, people in both 

protected and unprotected groups must have an equal 

probability of correctly belonging to the positive class. 

(49) 

Counterfactual 

Fairness 
Individual 

A decision is fair towards an individual if it is the same in 

both the actual world and a counterfactual world where the 

individual belongs to a different demographic group. 

(50) 

Conditional 

Statistical Parity 
Group 

People in both protected and unprotected (female and male) 

groups should have an equal probability of being assigned 

to a positive outcome given a set of legitimate factors. 

(49) 

While the AI community has contributed much research in anti-bias, fairness, equality, and equity 

theoretically and empirically, there are still many gaps that need to be filled, such as the need for a 

uniform definition and metric, equity vs. efficiency, and domain or specialized field adaptation. For future 

AI equity assessment in the transportation domain, we suggest the following: 1) enhance the knowledge 

related to equity in AI systems as the improvement of model equity level necessarily comes from the 

improvement of model developers' perception of equity, 2) plan data collection carefully and be aware of 

possible equity issues in the data, 3) select appropriate sensitivity variables, population groups, and 

performance metrics to assess equity in AI systems, and 4) make algorithms and models more transparent 

to allow stakeholders to understand the entire decision-making process so them can provide feedback 

related to equity based on their domain knowledge.  
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